Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.09519
Polímeros: Ciência e Tecnologia
Original Article

New biodegradable composites from starch and fibers of the babassu coconut

Carla Veronica Rodarte de Moura; Douglas da Cruz Sousa; Edmilson Miranda de Moura; Eugênio Celso Emérito de Araújo; Ilza Maria Sittolin

Downloads: 3
Views: 139

Abstract

This work aimed to obtain thermoplastic starch composites (TPS) derived from starch and fibers of babassu coconut. The (TPS) was prepared with 40% plasticizer (glycerol). The fibers underwent chemical treatment of alkalinization and bleaching. SEM images and infrared spectra showed that wax, lignin, and hemicellulose were removed from the fiber surface. SEM images of TPS starch showed a smooth and uniform surface, whereas images of the TPSWF composite (washed fiber) showed voids between the fiber and the TPS. This phenomenon was not observed in the SEM images of the composites TPSAF (alkalized fiber) and TPSBF (bleached fiber). The tensile strength and elastic modulus of the composites were higher than the pure TPS matrix. Concerning elongation, composites underwent less elongation than TPS. The mechanical properties found for the TPSWF and TPSAF composites do not differ. However, the mechanical properties of the TPSBF composite were better than the properties of the other composites.

Keywords

TPS, Babassu, composites, fiber, starch

References

1 Dominici, F., Gigli, M., Armentano, I., Genovese, L., Luzi, F., Torre, L., Munari, A., & Lotti, N. (2020). Improving the flexibility and compostability of starch/poly(butylene cyclohexanedicarboxylate)-based blends. Carbohydrate Polymers, 246, 116631. http://dx.doi.org/10.1016/j.carbpol.2020.116631. PMid:32747266.

2 Liu, W., Wang, Z., Liu, J., Dai, B., Hu, S., Hong, R., Xie, H., Li, Z., Chen, Y., & Zeng, G. (2020). Preparation, reinforcement and properties of thermoplastic starch film by film blowing. Food Hydrocolloids, 108, 106006. http://dx.doi.org/10.1016/j.foodhyd.2020.106006.

3 RameshKumar, S., Shaiju, P., O’Connor, K. E., & Babu, R. (2020). Bio-based and biodegradable polymers - State-of-the-art, challenges and emerging trends. Current Opinion in Green and Sustainable Chemistry, 21, 75-81. http://dx.doi.org/10.1016/j.cogsc.2019.12.005.

4 Stepto, R. F. T. (2006). Understanding the processing of thermoplastic starch. Macromolecular Symposia, 245-246(1), 571-577. http://dx.doi.org/10.1002/masy.200651382.

5 Khan, B., Bilal Khan Niazi, M., Samin, G., & Jahan, Z. (2017). Thermoplastic starch: A possible biodegradable food packaging material—A review. Journal of Food Process Engineering, 40(3), 12447-12454. http://dx.doi.org/10.1111/jfpe.12447.

6 Rhim, J. W., Park, H. M., & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. http://dx.doi.org/10.1016/j.progpolymsci.2013.05.008.

7 Tănase, E. E., Popa, M. E., Râpă, M., & Popa, O. (2015). PHB/cellulose fibers based materials: physical, mechanical and barrier properties. Agriculture and Agricultural Science Procedia, 6, 6. http://dx.doi.org/10.1016/j.aaspro.2015.08.099.

8 El Miri, N., Abdelouahdi, K., Barakat, A., Zahouily, M., Fihri, A., Solhy, A., & El Achaby, M. (2015). Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of filmforming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydrate Polymers, 129, 156-167. http://dx.doi.org/10.1016/j.carbpol.2015.04.051. PMid:26050901.

9 Fringant, C., Rinaudo, M., Foray, M. F., & Bardet, M. (1998). Preparation of mixed esters of starch or use of an external plasticizer: two different ways to change the properties of starch acetate films. Carbohydrate Polymers, 35(1-2), 97-106. http://dx.doi.org/10.1016/S0144-8617(97)00250-6.

10 Liu, W., Liu, S., Wang, Z., Dai, B., Liu, J., Chen, Y., Zeng, G., He, Y., Liu, Y., & Liu, R. (2019). Preparation and characterization of reinforced starch-based composites with compatibilizer by simple extrusion. Carbohydrate Polymers, 223, 115122. http://dx.doi.org/10.1016/j.carbpol.2019.115122. PMid:31426949.

11 Omotoso, M. A., Adeyefa, O. S., Animashaum, E. A., & Osibanjo, O. O. (2015). Biogradable Starch Film from Cassava, Corn, Potato and Yam. Chemistry and Materials Research, 7(12), 15-24.

12 Jullanun, P., & Yoksan, R. (2020). Morphological characteristics and properties of TPS/PLA/cassava pulp biocomposites. Polymer Testing, 88, 106522. http://dx.doi.org/10.1016/j.polymertesting.2020.106522.

13 Florez, J. P., Fazeli, M., & Simão, R. A. (2019). Preparation and characterization of thermoplastic starch composite reinforced by plasma-treated poly (hydroxybutyrate) PHB. International Journal of Biological Macromolecules, 123, 609-621. http://dx.doi.org/10.1016/j.ijbiomac.2018.11.070. PMid:30447362.

14 Nagarajan, V., Misra, M., & Mohanty, A. K. (2013). New engineered biocomposites from poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/poly (butylene adipate-co-terephthalate)(PBAT) blends and switchgrass: fabrication and performance evaluation. Industrial Crops and Products, 42, 461-468. http://dx.doi.org/10.1016/j.indcrop.2012.05.042.

15 Wang, Y., Weng, Y., & Wang, L. (2014). Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polymer Testing, 36, 119-125. http://dx.doi.org/10.1016/j.polymertesting.2014.04.001.

16 Muthuraj, R., Misra, M., Defersha, F., & Mohanty, A. K. (2016). Influence of processing parameters on the impact strength of biocomposites: a statistical approach. Composites. Part A, Applied Science and Manufacturing, 83, 120-129. http://dx.doi.org/10.1016/j.compositesa.2015.09.003.

17 Wan, Y. Z., Luo, H., He, F., Liang, H., Huang, Y., & Li, X. L. (2009). Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fiber-reinforced starch biocomposites. Composites Science and Technology, 69(7-8), 1212-1217. http://dx.doi.org/10.1016/j.compscitech.2009.02.024.

18 Khan, B., Niazi, M. B. K., Samin, G., & Jahan, Z. (2017). Thermoplastic starch: A possible biodegradable food packaging material—A review. Journal of Food Process Engineering, 40(3), 12447-12454. http://dx.doi.org/10.1111/jfpe.12447.

19 Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661-4667. http://dx.doi.org/10.1016/j.biortech.2007.09.043.

20 Pickering, K., Aruan Efendy, M., & Le, T. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites. Part A, Applied Science and Manufacturing, 83, 98-112. http://dx.doi.org/10.1016/j.compositesa.2015.08.038.

21 Zaman, H. U., Khan, M. A., & Khan, R. A. (2011). A comparative study on the mechanical and degradation properties of plant fiber reinforced polyethylene composites. Polymer Composites, 32(10), 1552-1560. http://dx.doi.org/10.1002/pc.21168.

22 Shoja, M., Mohammadi-Roshandeh, J., Hemmati, F., Zandi, A., & Farizeh, T. (2020). Plasticized starch-based biocomposites containing modified rice straw fillers with thermoplastic, thermoset-like and thermoset chemical structures. International Journal of Biological Macromolecules, 157, 715-725. http://dx.doi.org/10.1016/j.ijbiomac.2019.11.236. PMid:31794825.

23 Vedove, T. M. A. R. D., Maniglia, B. C., & Tadini, C. C. (2021). Production of sustainable smart packaging based on cassava starch and anthocyanin by an extrusion process. Journal of Food Engineering, 289, 110274. http://dx.doi.org/10.1016/j.jfoodeng.2020.110274.

24 Zhou, X., Cheng, R., Wang, B., Zeng, J., Xu, J., Li, J., Kang, L., Cheng, Z., Gao, W., & Chen, K. (2021). Biodegradable sandwich-architectured films derived from pea starch and polylactic acid with enhanced shelf-life for fruit preservation. Carbohydrate Polymers, 251, 117117. http://dx.doi.org/10.1016/j.carbpol.2020.117117. PMid:33142652.

25 Palanisamy, C. P., Cui, B., Zhang, H., Jayaraman, S., & Kodiveri Muthukaliannan, G. (2020). A comprehensive review on corn starch-based nanomaterials: properties, simulations, and applications. Polymers, 12(9), 2161. http://dx.doi.org/10.3390/polym12092161. PMid:32971849.

26 Mayandi, K., Rajini, N., Pitchipoo, P., Sreenivasan, V. S., Winowlin Jappes, J. T., & Alavudeen, A. (2015). A comparative study on characterisations of Cissus quadrangularis and Phoenix reclinata natural fibers. Journal of Reinforced Plastics and Composites, 34(4), 269-280. http://dx.doi.org/10.1177/0731684415570045.

27 Zainuddin, S. Y. Z., Ahmad, I., Kargarzadeh, H., Abdullah, I., & Dufresne, A. (2013). Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydrate Polymers, 92(2), 2299-2305. http://dx.doi.org/10.1016/j.carbpol.2012.11.106. PMid:23399291.

28 Perez, C. M., & Juliano, B. O. (1978). Modification of the simplified amylose test for milled rice. Starch. Biosythesis Nutrition Biomedical, 30(12), 424-426. http://dx.doi.org/10.1002/star.19780301206.

29 Maniglia, B. C., Tessaro, L., Ramos, A. P., & Tapia-Blácido, D. R. (2019). Which plasticizer is suitable for films based on babassu starch isolated by different methods? Food Hydrocolloids, 89, 143-152. http://dx.doi.org/10.1016/j.foodhyd.2018.10.038.

30 Ferreira, D. C. M., Molina, G., & Pelissari, F. M. (2020). Effect of edible coating from cassava starch and babassu flour (Orbignya phalerata) on Brazilian Cerrado Fruits Quality. Food and Bioprocess Technology, 13(1), 172-179. http://dx.doi.org/10.1007/s11947-019-02366-z.

31 Vieira, A. P., Santana, S. A. A., Bezerra, C. W. B., Silva, H. A. S., Chaves, J. A. P., Melo, J. C. P., Silva Filho, E., & Airoldi, C. (2011). Epicarp and Mesocarp of Babassu (Orbignya speciosa): Characterization and Application in Copper Phtalocyanine Dye Removal. Journal of the Brazilian Chemical Society, 22(1), 21-29. http://dx.doi.org/10.1590/S0103-50532011000100003.

32 Furtado, J. B. M., Furtado Filho, P. A., Oliveira, T. P., Caetano, M. R. S., Araújo, I. M. S., Figueiredo, F. C., & Santos, J. R. Jr. (2020). Chemical caracterization of the fiber of the stem of the babaçu palm tree natural and after treatment. Revista de Engenharia e Pesquisa Aplicada, 5(3), 56-64. http://dx.doi.org/10.25286/repa.v5i3.1254.

33 Abidi, N., Cabrales, L., & Haigler, C. H. (2014). Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydrate Polymers, 100, 9-16. http://dx.doi.org/10.1016/j.carbpol.2013.01.074. PMid:24188832.

34 Santos, E. B. C., Moreno, C. G., Barros, J. J. P., Moura, D. A., Fim, F. C., Ries, A., Wellen, R. M. R., & Silva, L. B. (2018). Effect of Alkaline and Hot water treatments on the structure and morphology of piassava fibers. Materials Research, 21(2), e20170365. http://dx.doi.org/10.1590/1980-5373-mr-2017-0365.

35 Morales-Cepeda, A. B., Ponce-Medina, M. E., Salas-Papayanopolos, H., Lozano, T., Zamudio, M., & Lafleur, P. G. (2015). Preparation and characterization of candelilla fiber (Euphorbia antisyphilitica) and its reinforcing effect in polypropylene composites. Cellulose (London, England), 22(6), 3839-3849. http://dx.doi.org/10.1007/s10570-015-0776-y.

36 Zhang, T., Guo, M., Cheng, L., & Li, X. (2015). Investigations on the structure and properties of palm leaf sheath fiber. Cellulose (London, England), 22(2), 1039-1051. http://dx.doi.org/10.1007/s10570-015-0570-x.

37 Campos, A., Sena Neto, A. R., Rodrigues, V. B., Luchesi, B. R., Mattoso, L. H. C., & Marconcini, J. M. (2018). Efeect of raw and chemically treated oil palm mesocarp fibers on thermoplastic cassava starch properties. Industrial Crops and Products, 124, 149-154. http://dx.doi.org/10.1016/j.indcrop.2018.07.075.

38 Valcárcel-Yamani, B., Rondán-Sanabria, G. G., & Finardi-Filho, F. (2013). The physical, chemical and functional characterization of starches from Andean tubers: Oca (Oxalis tuberosa Molina), olluco (Ullucus tuberosus Caldas) and mashua (Tropaeolum tuberosum Ruiz & Pavón). Brazilian Journal of Pharmaceutical Sciences, 49(3), 453-464. http://dx.doi.org/10.1590/S1984-82502013000300007.

39 Jimenéz-Hernández, J., Salazar-Montoya, J. A., & Ramos-Ramírez, E. G. (2007). Physical, chemical and microscopic characterization of a new starch from chayote (Sechium edule) tuber and its comparison with potato and maize starches. Carbohydrate Polymers, 68(4), 679-686. http://dx.doi.org/10.1016/j.carbpol.2006.07.035.

40 Maniglia, B. C., & Tapia-Blácido, D. R. (2016). Isolation and characterization of starch from Babassu mesocarp. Food Hydrocolloids, 55, 47-55. http://dx.doi.org/10.1016/j.foodhyd.2015.11.001.

41 Zimmermann, M. V. G., Turella, T. C., Zattera, A. J., & Santana, R. M. C. (2014). Influence of the chemical treatment of banana fiber on poly(ethylene-co-vinyl acetate) composites with and without a blowing agent. Polímeros: Ciência e Tecnologia, 24(1), 58-64. http://dx.doi.org/10.4322/polimeros.2013.071.

42 Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2013). Effects of chemical treatments on hemp fiber structure. Applied Surface Science, 276, 13-23. http://dx.doi.org/10.1016/j.apsusc.2013.02.086.

43 Martin, A., Martins, M. A., Mattoso, L. H. C., & Silva, O. R. R. F. (2009). Chemical and Structural Characterization of Sisal Fibers from Agave sisalana Variety. Polímeros: Ciência e Tecnologia, 19(1), 40-46. http://dx.doi.org/10.1590/S0104-14282009000100011.

44 Porras, A., Maranon, A., & Ashcroft, I. A. (2015). Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials. Composites. Part B, Engineering, 74(1), 66-73. http://dx.doi.org/10.1016/j.compositesb.2014.12.033.

45 Barreto, A. C. H., Rosa, D. S., Fechine, P. B. A., & Mazzetto, S. E. (2011). Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Composites. Part A, Applied Science and Manufacturing, 42(5), 492-500. http://dx.doi.org/10.1016/j.compositesa.2011.01.008.

46 Gonçalves, A. P. B., Miranda, C. S., Guimarães, D. H., Oliveira, J. C., Cruz, A. M. F., Silva, F. L. B. M., Luporini, S., & José, N. M. (2015). Physicochemical, mechanical and morphologic characterization of purple banana fibers. Materials Research, 18(2, Suppl. 2), 205-209. http://dx.doi.org/10.1590/1516-1439.366414.

47 Sajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant starch–A Review. Comprehensive Reviews in Food Science and Food Safety, 5(1), 1-17. http://dx.doi.org/10.1111/j.1541-4337.2006.tb00076.x. PMid:33412740.

48 Castaño, J., Rodriguez-Llamazares, S., Contreras, K., Carrasco, C., Pozo, C., Bouza, R., Franco, C. M. L., & Giraldo, D. (2014). Horse chestnut (Aesculus hippocastanum L.) starch: basic physico-chemical characteristics and use as thermoplastic material. Carbohydrate Polymers, 112, 677-685. http://dx.doi.org/10.1016/j.carbpol.2014.06.046. PMid:25129797.

49 Qin, F., Man, J., Cai, C., Xu, B., Gu, M., Zhu, L., Shi, Y. C., Liu, Q., & Wei, C. (2012). Physicochemical properties of high-amylose rice starches during kernel development. Carbohydrate Polymers, 88(2), 690-698. http://dx.doi.org/10.1016/j.carbpol.2012.01.013.

50 Copeland, L., Blazek, J., Salman, H., & Tang, M. C. (2009). Form and functionality of starch. Food Hydrocolloids, 23(6), 1527-1534. http://dx.doi.org/10.1016/j.foodhyd.2008.09.016.

51 Pelissari, F. M., Andrade-Mahecha, M. M., Sobral, P. J. D. A., & Menegalli, F. C. (2012). Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca). Starch: Biosynthesis Nutrition Biomedical, 64(5), 382-391. http://dx.doi.org/10.1002/star.201100133.

52 Guimarães, J. L., Frollini, E., Silva, C. G., Wypych, F., & Satyanarayana, K. G. (2009). Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Industrial Crops and Products, 30(3), 407-415. http://dx.doi.org/10.1016/j.indcrop.2009.07.013.

53 Sheltami, R. M., Abdullah, I., Ahmad, I., Dufresne, A., & Kargarzadeh, H. (2012). Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers, 88(2), 772-779. http://dx.doi.org/10.1016/j.carbpol.2012.01.062.

54 Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt Boix, A. (2018). Isolation and characterisation of microcrystalline cellulose and celulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers, 191, 205-215. http://dx.doi.org/10.1016/j.carbpol.2018.03.022. PMid:29661311.

55 Teixeira, P. R. S., Teixeira, A. S. N. M., Farias, E. A. O., Silva, D. A., Nunes, L. C. C., Leite, C. M. S., Silva Filho, E. C., & Eiras, C. (2018). Chemically modified Babassu coconut (Orbignya sp.) biopolymer: characterization and development of a thin film for its application in electrochemical sensors. Journal of Polymer Research, 25(127), 1-11. http://dx.doi.org/10.1007/s10965-018-1520-8.

56 Bhaduri, S. K., Mathew, M. D., Day, A., & Pandey, S. N. (1994). Thermal behaviour of jute fiber and its components. I: D.S.C. studies. Cellulose Chemistry and Technology, 28(4), 391-399. http://dx.doi.org/10.1177/004051759306300303.

57 Shafizadeh, F., & Bradbury, A. G. W. (1979). Thermal degradation of cellulose in air and nitrogen at low temperatures. Journal of Applied Polymer Science, 23(5), 1431-1442. http://dx.doi.org/10.1002/app.1979.070230513.

58 Kaewtatip, K., & Thongmee, J. (2014). Preparation of thermoplastic starch/treated bagasse fiber composites. Starch: Biosynthesis Nutrition Biomedical, 66(7-8), 724-728. http://dx.doi.org/10.1002/star.201400005.

59 Kaewtatip, K., & Thongmee, J. (2013). Effect of kraft lignin and esterified lignin on the properties of thermoplastic starch. Materials & Design, 49, 701-704. http://dx.doi.org/10.1016/j.matdes.2013.02.010.

60 Wang, Z., Gu, Z., Hong, Y., Cheng, L., & Li, Z. (2011). Bonding strength and water resistance of starchbased wood adhesive improved by silica nanoparticles. Carbohydrate Polymers, 86(1), 72-76. http://dx.doi.org/10.1016/j.carbpol.2011.04.003.

61 Corradinia, E., Carvalho, A. J. F., Curvelo, A. A. S., Agnellia, J. A. M., & Mattoso, L. H. C. (2007). Preparation and characterization of Thermoplastic Starch/Zein Blends. Materials Research, 10(3), 227-231. http://dx.doi.org/10.1590/S1516-14392007000300002.

62 Mendes, J. F., Paschoalin, R. T., Carmona, V. B., Sena Neto, A. R., Marques, A. C. P., Marconcini, J. M., Mattoso, L. H. C., Medeiros, E. S., & Oliveira, J. E. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452-458. http://dx.doi.org/10.1016/j.carbpol.2015.10.093. PMid:26686150.

63 Prachayawarakorn, J., Chaiwatyothin, S., Mueangta, S., & Hanchana, A. (2013). Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Materials & Design, 47, 309-315. http://dx.doi.org/10.1016/j.matdes.2012.12.012.

64 Ibrahim, H., Farag, M., Megahed, H., & Mehanny, S. (2014). Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohydrate Polymers, 101, 11-19. http://dx.doi.org/10.1016/j.carbpol.2013.08.051. PMid:24299743.

65 Liu, H., Xie, F., Yu, L., Chen, L., & Li, L. (2009). Thermal processing of starch-based polymers. Progress in Polymer Science, 34(12), 1348-1368. http://dx.doi.org/10.1016/j.progpolymsci.2009.07.001.

66 Vasconcelos, G. C. M. S., Carvalho, L. H., Barbosa, R., & Alves, T. (2019). Evaluation of the morphology, mechanical and thermal properties of cork and green polyethylene ecocomposites. Materials Research Express, 6(095331), 1-11. http://dx.doi.org/10.1088/2053-1591/ab33b8.

67 Fazeli, M., Florez, J. P., & Simão, R. A. (2019). Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification. Composites. Part B, Engineering, 163(15), 207-216. http://dx.doi.org/10.1016/j.compositesb.2018.11.048.

68 Fonteles, C. A. L., Brito, G. F., Carvlho, L. H., Alves, T. S., & Barbosa, R. (2016). Composites based on thermoset resin and Orbignya phalerata (Babassu Coconut): Evaluation of mechanical properties, morphology and water sorption. Materials Science Forum, 869, 237-242, 242. http://dx.doi.org/10.4028/www.scientific.net/MSF.869.237

69 Grylewicz, A., Spychaj, T., & Zdanowicz, M. (2019). Thermoplastic starch/wood biocomposites processed with deep eutectic solvents. Composites. Part A, Applied Science and Manufacturing, 121, 517-524. http://dx.doi.org/10.1016/j.compositesa.2019.04.001.

70 Zhang, Y., Rempel, C., & Liu, Q. (2014). Thermoplastic starch processing and characteristics – A Review. Critical Reviews in Food Science and Nutrition, 54(10), 1353-1370. http://dx.doi.org/10.1080/10408398.2011.636156. PMid:24564592.

71 Corradini, E., Agnelli, J. A. M., Morais, L. C., & Mattoso, L. H. C. (2008). Study of properties of biodegradable composites of starch/gluten/glycerol reinforced with sisal fibers. Polímeros: Ciência e Tecnologia, 18(4), 353-358. http://dx.doi.org/10.1590/S0104-14282008000400016.

72 Xie, Q., Li, F., Li, J., Wang, L., Li, Y., Zhang, C., Xu, J., & Chen, S. (2018). A new biodegradable sisal fiber–starch packing composite with nest structure. Carbohydrate Polymers, 189(1), 56-64. http://dx.doi.org/10.1016/j.carbpol.2018.01.063. PMid:29580426.
 

60a7a714a95395548435b452 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections