Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Review Article

Commercial and potential applications of bacterial cellulose in Brazil: ten years review

Luiz Diego Marestoni; Hernane da Silva Barud; Rodrigo José Gomes; Rebeca Priscila Flora Catarino; Natália Norika Yassunaka Hata; Jéssica Barrionuevo Ressutte; Wilma Aparecida Spinosa

Downloads: 5
Views: 496


In the last decade, bacterial cellulose (BC) has received considerable attention around the world, including in Brazil. The unique properties of BC, such as mechanical stability, tensile strength, thermostability, crystallinity, purity and biocompatibility make it a promising candidate for commercial applications in different areas. This article provides a comprehensive synthesis of commercial applications and studies related to BC around the world and shows the importance and development of Brazilian research during the last decade. In this review we present an overview of BC structure, biosynthesis and possible applications of BC mainly in the food, electronics, bioengineering, cosmetics and biomedical areas. The most significant contributions of Brazilian researchers using BC have been carried out in the biomedical area. Despite the increase in BC reserch, Brazil also needs to develop strategies to expand the use and commercialization of BC products, for which government financial support is extremely necessary.


bacterial cellulose, bacterial cellulose applications, biomedical, Brazil, electronics


1 Carreira, P., Mendes, J. A. S., Trovatti, E., Serafim, L. S., Freire, C. S. R., Silvestre, A. J. D., & Pascoal, C., No. (2011). Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresource Technology, 102(15), 7354-7360. http://dx.doi.org/10.1016/j.biortech.2011.04.081. PMid:21601445.

2 Castro, C., Zuluaga, R., Álvarez, C., Putaux, J. L., Caro, G., Rojas, O. J., Mondragon, I., & Gañán, P. (2012). Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydrate Polymers, 89(4), 1033-1037. http://dx.doi.org/10.1016/j.carbpol.2012.03.045. PMid:24750910.

3 Qiu, X., & Hu, S. (2013). “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials, 6(3), 738-781. http://dx.doi.org/10.3390/ma6030738. PMid:28809338.

4 Sheykhnazari, S., Tabarsa, T., Ashori, A., Shakeri, A., & Golalipour, M. (2011). Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics. Carbohydrate Polymers, 86(3), 1187-1191. http://dx.doi.org/10.1016/j.carbpol.2011.06.011.

5 Chen, L., Hong, F., Yang, X., & Han, S. F. (2013). Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresource Technology, 135, 464-468. http://dx.doi.org/10.1016/j.biortech.2012.10.029. PMid:23186663.

6 Dayal, M. S., Goswami, N., Sahai, A., Jain, V., Mathur, G., & Mathur, A. (2013). Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydrate Polymers, 94(1), 12-16. http://dx.doi.org/10.1016/j.carbpol.2013.01.018. PMid:23544503.

7 Kiziltas, E. E., Kiziltas, A., & Gardner, D. J. (2015). Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydrate Polymers, 124, 131-138. http://dx.doi.org/10.1016/j.carbpol.2015.01.036. PMid:25839803.

8 Picheth, G. F., Pirich, C. L., Sierakowski, M. R., Woehl, M. A., Sakakibara, C. N., de Souza, C. F., Martin, A. A., da Silva, R., & de Freitas, R. A. (2017). Bacterial cellulose in biomedical applications: a review. International Journal of Biological Macromolecules, 104(Pt A), 97-106. http://dx.doi.org/10.1016/j.ijbiomac.2017.05.171. PMid:28587970.

9 Yamada, Y., & Yukphan, P. (2008). Genera and species in acetic acid bacteria. International Journal of Food Microbiology, 125(1), 15-24. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.11.077. PMid:18199517.

10 Yamada, Y., Yukphan, P., Lan Vu, H. T., Muramatsu, Y., Ochaikul, D., Tanasupawat, S., & Nakagawa, Y. (2012). Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). The Journal of General and Applied Microbiology, 58(5), 397-404. http://dx.doi.org/10.2323/jgam.58.397. PMid:23149685.

11 Wang, S. S., Han, Y. H., Ye, Y. X., Shi, X. X., Xiang, P., Chen, D. L., & Li, M. (2017). Physicochemical characterization of high-quality bacterial cellulose produced by Komagataeibacter sp. strain W1 and identification of the associated genes in bacterial cellulose production. RSC Advances, 7(71), 45145-45155. http://dx.doi.org/10.1039/C7RA08391B.

12 Kumbhar, J. V., Rajwade, J. M., & Paknikar, K. M. (2015). Fruit peels support higher yield and superior quality bacterial cellulose production. Applied Microbiology and Biotechnology, 99(16), 6677-6691. http://dx.doi.org/10.1007/s00253-015-6644-8. PMid:25957154.

13 Li, Y., Tian, C., Tian, H., Zhang, J., He, X., Ping, W., & Lei, H. (2012). Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Applied Microbiology and Biotechnology, 96(6), 1479-1487. http://dx.doi.org/10.1007/s00253-012-4242-6. PMid:22782249.

14 Ross, P., Mayer, R., & Benziman, A. N. D. M. (1991). Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 55(1), 35-58. http://dx.doi.org/10.1128/MR.55.1.35-58.1991. PMid:2030672.

15 Tonouch, N. (2016). Cellulose and other capsular polysaccharides of acetic acid bacteria. In K. Matsushita, H. Toyama, N. Tonouchi, & A. Okamoto-Kainuma (Eds.), Acetic acid bacteria (pp. 299-320). Tokyo: Springer.

16 Lin, S. P., Loira Calvar, I., Catchmark, J. M., Liu, J. R., Demirci, A., & Cheng, K. C. (2013). Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20(5), 2191-2219. http://dx.doi.org/10.1007/s10570-013-9994-3.

17 Cacicedo, M. L., Castro, M. C., Servetas, I., Bosnea, L., Boura, K., Tsafrakidou, P., Dima, A., Terpou, A., Koutinas, A., & Castro, G. R. (2016). Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 213, 172-180. http://dx.doi.org/10.1016/j.biortech.2016.02.071. PMid:26927233.

18 Tonouchi, N., Tsuchida, T., Yoshinaga, F., Beppu, T., & Horinouchi, S. (1996). Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum. Bioscience, Biotechnology, and Biochemistry, 60(8), 1377-1379. http://dx.doi.org/10.1271/bbb.60.1377.

19 Koizumi, S., Yue, Z., Tomita, Y., Kondo, T., Iwase, H., Yamaguchi, D., & Hashimoto, T. (2008). Bacterium organizes hierarchical amorphous structure in microbial cellulose. The European Physical Journal E, 26(1-2), 137-142. http://dx.doi.org/10.1140/epje/i2007-10259-3. PMid:18311475.

20 Kimura, S., Chen, H. P., Saxena, I. M., Brown, J., Jr., & Itoh, T. (2001). Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum. Journal of Bacteriology, 183(19), 5668-5674. http://dx.doi.org/10.1128/JB.183.19.5668-5674.2001. PMid:11544230.

21 Mohite, B. V., & Patil, S. V. (2014). Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydrate Polymers, 106(1), 132-141. http://dx.doi.org/10.1016/j.carbpol.2014.02.012. PMid:24721060.

22 Ruka, D. R., Simon, G. P., & Dean, K. M. (2014). Bacterial cellulose and its use in renewable composites. In V. J. Thakur (Ed.), Nanocellulose polymer nanocomposites: fundamentals and applications (pp. 89-130). Salem: Wiley. http://dx.doi.org/10.1002/9781118872246.ch4.

23 Qiu, K., & Netravali, A. N. (2014). A review of fabrication and applications of bacterial cellulose based nanocomposites. Polymer Reviews, 54(4), 598-626. http://dx.doi.org/10.1080/15583724.2014.896018.

24 Shoda, M., & Sugano, Y. (2005). Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering; BBE, 10(1), 1-8. http://dx.doi.org/10.1007/BF02931175.

25 Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C., & Sun, D. (2014). Recent advances in bacterial cellulose. Cellulose, 21(1), 1-30. http://dx.doi.org/10.1007/s10570-013-0088-z.

26 Fan, X., Gao, Y., He, W., Hu, H., Tian, M., Wang, K., & Pan, S. (2016). Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydrate Polymers, 151, 1068-1072. http://dx.doi.org/10.1016/j.carbpol.2016.06.062. PMid:27474656.

27 Keshk, S. M. (2014). Bacterial cellulose production and its industrial applications. Journal of Bioprocessing & Biotechniques, 4(2), 1-10. http://dx.doi.org/10.4172/2155-9821.1000150.

28 Sani, A., & Dahman, Y. (2010). Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods. Journal of Chemical Technology and Biotechnology, 85(2), 151-164. http://dx.doi.org/10.1002/jctb.2300.

29 Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods: a review. Carbohydrate Polymers, 219, 63-76. http://dx.doi.org/10.1016/j.carbpol.2019.05.008. PMid:31151547.

30 Blanco Parte, F. G., Santoso, S. P., Chou, C. C., Verma, V., Wang, H. T., Ismadji, S., & Cheng, K. C. (2020). Current progress on the production, modification, and applications of bacterial cellulose. Critical Reviews in Biotechnology, 40(3), 397-414. http://dx.doi.org/10.1080/07388551.2020.1713721. PMid:31937141.

31 Islam, M. U., Ullah, M. W., Khan, S., Shah, N., & Park, J. K. (2017). Strategies for cost-effective and enhanced production of bacterial cellulose. International Journal of Biological Macromolecules, 102, 1166-1173. http://dx.doi.org/10.1016/j.ijbiomac.2017.04.110. PMid:28487196.

32 Singhsa, P., Narain, R., & Manuspiya, H. (2018). Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose, 25(3), 1571-1581. http://dx.doi.org/10.1007/s10570-018-1699-1.

33 He, X., Meng, H., Song, H., Deng, S., He, T., Wang, S., Wei, D., & Zhang, Z. (2020). Novel bacterial cellulose membrane biosynthesized by a new and highly efficient producer Komagataeibacter rhaeticus TJPU03. Carbohydrate Research, 493, 108030. http://dx.doi.org/10.1016/j.carres.2020.108030. PMid:32442702.

34 Lu, T., Gao, H., Liao, B., Wu, J., Zhang, W., Huang, J., Liu, M., Huang, J., Chang, Z., Jin, M., Yi, Z., & Jiang, D. (2020). Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis. Carbohydrate Polymers, 232, 115788. http://dx.doi.org/10.1016/j.carbpol.2019.115788. PMid:31952596.

35 Revin, V. V., Liyas’kina, E. V., Sapunova, N. B., & Bogatyreva, A. O. (2020). Isolation and characterization of the strains producing bacterial cellulose. Microbiology, 89(1), 86-95. http://dx.doi.org/10.1134/S0026261720010130.

36 Sharma, C., & Bhardwaj, N. K. (2019). Bacterial nanocellulose: present status, biomedical applications and future perspectives. Materials Science and Engineering C, 104, 109963. http://dx.doi.org/10.1016/j.msec.2019.109963. PMid:31499992.

37 Chandrasekaran, P. T., Bari, N. K., & Sinha, S. (2017). Enhanced bacterial cellulose production from Gluconobacter xylinus using super optimal broth. Cellulose, 24(10), 4367-4381. http://dx.doi.org/10.1007/s10570-017-1419-2.

38 Kurosumi, A., Sasaki, C., Yamashita, Y., & Nakamura, Y. (2009). Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers, 76(2), 333-335. http://dx.doi.org/10.1016/j.carbpol.2008.11.009.

39 Güzel, M., & Akpınar, Ö. (2019). Production and characterization of bacterial cellulose from citrus peels. Waste and Biomass Valorization, 10(8), 2165-2175. http://dx.doi.org/10.1007/s12649-018-0241-x.

40 Jozala, A. F., Pértile, R. A. N., Santos, C. A., Santos-Ebinuma, V. C., Seckler, M. M., Gama, F. M., & Pessoa, A., Jr. (2015). Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Applied Microbiology and Biotechnology, 99(3), 1181-1190. http://dx.doi.org/10.1007/s00253-014-6232-3. PMid:25472434.

41 Machado, R. T. A., Meneguin, A. B., Sábio, R. M., Franco, D. F., Antonio, S. G., Gutierrez, J., Tercjak, A., Berretta, A. A., Ribeiro, S. J. L., Lazarini, S. C., Lustri, W. R., & Barud, H. S. (2018). Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production. Industrial Crops and Products, 122, 637-646. http://dx.doi.org/10.1016/j.indcrop.2018.06.048.

42 Salari, M., Sowti Khiabani, M., Rezaei Mokarram, R., Ghanbarzadeh, B., & Samadi Kafil, H. (2019). Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. International Journal of Biological Macromolecules, 122, 280-288. http://dx.doi.org/10.1016/j.ijbiomac.2018.10.136. PMid:30342939.

43 Souza, E. F., Furtado, M. R., Carvalho, C. W. P., Freitas-Silva, O., & Gottschalk, L. M. F. (2020). Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses. International Journal of Biological Macromolecules, 146, 285-289. http://dx.doi.org/10.1016/j.ijbiomac.2019.12.180. PMid:31883899.

44 Hussain, Z., Sajjad, W., Khan, T., & Wahid, F. (2019). Production of bacterial cellulose from industrial wastes: a review. Cellulose, 26(5), 2895-2911. http://dx.doi.org/10.1007/s10570-019-02307-1.

45 Velásquez-Riaño, M., & Bojacá, V. (2017). Production of bacterial cellulose from alternative low-cost substrates. Cellulose, 24(7), 2677-2698. http://dx.doi.org/10.1007/s10570-017-1309-7.

46 Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Bacterial cellulose: a masterpiece of nature’s arts. Journal of Materials Science, 35(2), 261-270. http://dx.doi.org/10.1023/A:1004775229149.

47 Ullah, H., Santos, H. A., & Khan, T. (2016). Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 23(4), 2291-2314. http://dx.doi.org/10.1007/s10570-016-0986-y.

48 Dourado, F., Gama, M., & Rodrigues, A. C. (2017). A Review on the toxicology and dietetic role of bacterial cellulose. Toxicology Reports, 4, 543-553. http://dx.doi.org/10.1016/j.toxrep.2017.09.005. PMid:29090119.

49 Fontana, J. D., Souza, A. M., Fontana, C. K., Torriani, I. L., Moreschi, J. C., Gallotti, B. J., de Souza, S. J., Narcisco, G. P., Bichara, J. A., & Farah, L. F. (1990). Acetobacter cellulose pellicle as a temporary skin substitute. Applied Biochemistry and Biotechnology, 24-25(1), 253-264. http://dx.doi.org/10.1007/BF02920250. PMid:2353811.

50 Oliveira Barud, H. G., Silva, R. R., Silva Barud, H., Tercjak, A., Gutierrez, J., Lustri, W. R., Oliveira, O. B., & Ribeiro, S. J. L. (2016). A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydrate Polymers, 153, 406-420. http://dx.doi.org/10.1016/j.carbpol.2016.07.059. PMid:27561512.

51 Picheth, G. F., Sierakowski, M. R., Woehl, M. A., Ono, L., Cofré, A. R., Vanin, L. P., Pontarolo, R., & De Freitas, R. A. (2014). Lysozyme-triggered epidermal growth factor release from bacterial cellulose membranes controlled by smart nanostructured films. Journal of Pharmaceutical Sciences, 103(12), 3958-3965. http://dx.doi.org/10.1002/jps.24205. PMid:25308839.

52 Klemm, D., Schumann, D., Udhardt, U., & Marsch, S. (2001). Bacterial synthesized cellulose: artificial blood vessels for microsurgery. Progress in Polymer Science, 26(9), 1561-1603. http://dx.doi.org/10.1016/S0079-6700(01)00021-1.

53 Lin, N., & Dufresne, A. (2014). Nanocellulose in biomedicine: current status and future prospect. European Polymer Journal, 59, 302-325. http://dx.doi.org/10.1016/j.eurpolymj.2014.07.025.

54 Cazón, P., & Vázquez, M. (2021). Improving bacterial cellulose films by ex-situ and in-situ modifications: a review. Food Hydrocolloids, 113, 106514. http://dx.doi.org/10.1016/j.foodhyd.2020.106514.

55 Gorgieva, S., & Trček, J. (2019). Bacterial cellulose: production, modification and perspectives in biomedical applications. Nanomaterials, 9(10), 1352. http://dx.doi.org/10.3390/nano9101352. PMid:31547134.

56 Lin, K. W., & Lin, H. Y. (2004). Quality characteristics of chinese-style meatball containing bacterial cellulose (nata). Journal of Food Science, 69(3), SNQ107-SNQ111. http://dx.doi.org/10.1111/j.1365-2621.2004.tb13378.x.

57 Lin, S., Chen, L.-C., & Chen, H.-H. (2011). Physical characteristics of surimi and bacterial cellulose composite gel. Journal of Food Process Engineering, 34(4), 1363-1379. http://dx.doi.org/10.1111/j.1745-4530.2009.00533.x.

58 Karahan, A. G., Kart, A., Akoǧlu, A., & Çakmakçi, M. L. (2011). Physicochemical properties of low-fat soft cheese Turkish Beyaz made with bacterial cellulose as fat mimetic. International Journal of Dairy Technology, 64(4), 502-508. http://dx.doi.org/10.1111/j.1471-0307.2011.00718.x.

59 Guo, Y., Zhang, X., Hao, W., Xie, Y., Chen, L., Li, Z., Zhu, B., & Feng, X. (2018). Nano-bacterial cellulose/soy protein isolate complex gel as fat substitutes in ice cream model. Carbohydrate Polymers, 198, 620-630. http://dx.doi.org/10.1016/j.carbpol.2018.06.078. PMid:30093042.

60 Akoğlu, A., Cakir, I., Karahan, A. G., & Cakmakci, M. L. (2018). Effects of bacterial cellulose as a fat replacer on some properties of fat-reduced mayonnaise. Romanian Biotechnological Letters, 23(3), 13674-13680.

61 Marchetti, L., Muzzio, B., Cerrutti, P., Andrés, S. C., & Califano, A. N. (2017). Impact of bacterial nanocellulose on the rheological and textural characteristics of low-lipid meat emulsions. In A. E. Oprea & A. M. Grumezescu (Eds.), Nanotechnology applications in food (pp. 345-361). Amsterdam: Elsevier. http://dx.doi.org/10.1016/B978-0-12-811942-6.00017-0.

62 Paximada, P., Koutinas, A. A., Scholten, E., & Mandala, I. G. (2016). Effect of bacterial cellulose addition on physical properties of WPI emulsions: comparison with common thickeners. Food Hydrocolloids, 54, 245-254. http://dx.doi.org/10.1016/j.foodhyd.2015.10.014.

63 Yan, H., Chen, X., Song, H., Li, J., Feng, Y., Shi, Z., Wang, X., & Lin, Q. (2017). Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocolloids, 72, 127-135. http://dx.doi.org/10.1016/j.foodhyd.2017.05.044.

64 Zhang, X., Zhou, J., Chen, J., Li, B., Li, Y., & Liu, S. (2020). Edible foam based on pickering effect of bacterial cellulose nanofibrils and soy protein isolates featuring interfacial network stabilization. Food Hydrocolloids, 100, 105440. http://dx.doi.org/10.1016/j.foodhyd.2019.105440.

65 Fijałkowski, K., Peitler, D., Rakoczy, R., & Zywicka, A. (2016). Survival of probiotic lactic acid bacteria immobilized in different forms of bacterial cellulose in simulated gastric juices and bile salt solution. Lebensmittel-Wissenschaft + Technologie, 68, 322-328. http://dx.doi.org/10.1016/j.lwt.2015.12.038.

66 Nguyen, D. N., Ton, N. M. N., & Le, V. V. M. (2009). Optimization of Saccharomyces cerevisiae immobilization in bacterial cellulose by ‘adsorption- incubation ’ method. International Food Research Journal, 64, 59-64.

67 Gedarawatte, S. T. G., Ravensdale, J. T., Johns, M. L., Azizi, A., Al-Salami, H., Dykes, G. A., & Coorey, R. (2020). Effectiveness of bacterial cellulose in controlling purge accumulation and improving physicochemical, microbiological, and sensorial properties of vacuum-packaged beef. Journal of Food Science, 85(7), 2153-2163. http://dx.doi.org/10.1111/1750-3841.15178. PMid:32572986.

68 Ma, X., Chen, Y., Huang, J., Lv, P., Hussain, T., & Wei, Q. (2020). In situ formed active and intelligent bacterial cellulose/cotton fiber composite containing curcumin. Cellulose, 27(16), 9371-9382. http://dx.doi.org/10.1007/s10570-020-03413-1.

69 Shafipour Yordshahi, A., Moradi, M., Tajik, H., & Molaei, R. (2020). Design and preparation of antimicrobial meat wrapping nanopaper with bacterial cellulose and postbiotics of lactic acid bacteria. International Journal of Food Microbiology, 321, 108561. http://dx.doi.org/10.1016/j.ijfoodmicro.2020.108561. PMid:32078868.

70 Xie, Y., Niu, X., Yang, J., Fan, R., Shi, J., Ullah, N., Feng, X., & Chen, L. (2020). Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. International Journal of Biological Macromolecules, 150, 480-491. http://dx.doi.org/10.1016/j.ijbiomac.2020.01.291. PMid:32007551.

71 Akoğlu, A., Çakır, İ., Akoğlu, İ. T., Karahan, A. G., & Çakmakçı, M. L. (2015). Effect of bacterial cellulose as a fat replacer on some quality characteristics of fat reduced sucuk. Gida: The Journal of Food, 40(3), 133-139.

72 Bandyopadhyay, S., Saha, N., & Saha, P. (2020). Comparative analysis of bacterial cellulose based polymeric films for food packaging. AIP Conference Proceedings, 2205, 020069. http://dx.doi.org/10.1063/1.5142984.

73 Jayani, T., Sanjeev, B., Marimuthu, S., & Uthandi, S. (2020). Bacterial Cellulose Nano Fiber (BCNF) as carrier support for the immobilization of probiotic, Lactobacillus acidophilus 016. Carbohydrate Polymers, 250, 116965. http://dx.doi.org/10.1016/j.carbpol.2020.116965. PMid:33049863.

74 Razavi, M. S., Golmohammadi, A., Nematollahzadeh, A., Fiori, F., Rovera, C., & Farris, S. (2020). Preparation of cinnamon essential oil emulsion by bacterial cellulose nanocrystals and fish gelatin. Food Hydrocolloids, 109, 106111. http://dx.doi.org/10.1016/j.foodhyd.2020.106111.

75 Fei, G., Wang, Y., Wang, H., Ma, Y., Guo, Q., Huang, W., Yang, D., Shao, Y., & Ni, Y. (2019). Fabrication of bacterial cellulose/polyaniline nanocomposite paper with excellent conductivity, strength, and flexibility. ACS Sustainable Chemistry & Engineering, 7(9), 8225. http://dx.doi.org/10.1021/acssuschemeng.8b06306.

76 Guan, F., Chen, S., Sheng, N., Chen, Y., Yao, J., Pei, Q., & Wang, H. (2019). Mechanically robust reduced graphene oxide / bacterial cellulose fi lm obtained via biosynthesis for fl exible supercapacitor. Chemical Engineering Journal, 360, 829-837. http://dx.doi.org/10.1016/j.cej.2018.11.202.

77 Kim, H., Yim, E., Kim, J., Kim, S., Park, J., & Oh, I.-K. (2017). Nano energy bacterial nano ‐ cellulose triboelectric nanogenerator. Nano Energy, 33, 130-137. http://dx.doi.org/10.1016/j.nanoen.2017.01.035.

78 Xie, Y., Zheng, Y., Fan, J., Wang, Y., Yue, L., & Zhang, N. (2018). Novel electronic − ionic hybrid conductive composites for multifunctional flexible bioelectrode based on in situ synthesis of poly (dopamine) on bacterial cellulose. ACS Applied Materials & Interfaces, 10(26), 22692-22702. http://dx.doi.org/10.1021/acsami.8b05345. PMid:29895145.

79 Żywicka, A., Fijałkowski, K., Junka, A. F., Grzesiak, J., & El Fray, M. (2018). Modification of bacterial cellulose with quaternary ammonium compounds based on fatty acids and amino acids and the effect on antimicrobial activity. Biomacromolecules, 19(5), 1528-1538. http://dx.doi.org/10.1021/acs.biomac.8b00183. PMid:29579391.

80 Adepu, S., & Khandelwal, M. (2018). Broad-spectrum antimicrobial activity of bacterial cellulose silver nanocomposites with sustained release. Journal of Materials Science, 53(3), 1596-1609. http://dx.doi.org/10.1007/s10853-017-1638-9.

81 Horue, M., Cacicedo, M. L., Fernandez, M. A., Rodenak-Kladniew, B., Torres Sánchez, R. M., & Castro, G. R. (2020). Antimicrobial activities of bacterial cellulose – Silver montmorillonite nanocomposites for wound healing. Materials Science and Engineering C, 116, 111152. http://dx.doi.org/10.1016/j.msec.2020.111152. PMid:32806328.

82 Sajjad, W., Khan, T., Ul-Islam, M., Khan, R., Hussain, Z., Khalid, A., & Wahid, F. (2019). Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. Carbohydrate Polymers, 206, 548-556. http://dx.doi.org/10.1016/j.carbpol.2018.11.023. PMid:30553356.

83 Badshah, M., Ullah, H., Khan, A. R., Khan, S., Park, J. K., & Khan, T. (2018). Surface modification and evaluation of bacterial cellulose for drug delivery. International Journal of Biological Macromolecules, 113, 526-533. http://dx.doi.org/10.1016/j.ijbiomac.2018.02.135. PMid:29477541.

84 Beekmann, U., Schmölz, L., Lorkowski, S., Werz, O., Thamm, J., Fischer, D., & Kralisch, D. (2020). Process control and scale-up of modified bacterial cellulose production for tailor-made anti-inflammatory drug delivery systems. Carbohydrate Polymers, 236, 116062. http://dx.doi.org/10.1016/j.carbpol.2020.116062. PMid:32172877.

85 Inoue, B. S., Streit, S., Schneider, A. L. S., & Meier, M. M. (2020). Bioactive bacterial cellulose membrane with prolonged release of chlorhexidine for dental medical application. International Journal of Biological Macromolecules, 148, 1098-1108. http://dx.doi.org/10.1016/j.ijbiomac.2020.01.036. PMid:31917984.

86 Luo, H., Ao, H., Li, G., Li, W., Xiong, G., Zhu, Y., & Wan, Y. (2017). Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Current Applied Physics, 17(2), 249-254. http://dx.doi.org/10.1016/j.cap.2016.12.001.

87 Weyell, P., Beekmann, U., Küpper, C., Dederichs, M., Thamm, J., Fischer, D., & Kralisch, D. (2019). Tailor-made material characteristics of bacterial cellulose for drug delivery applications in dentistry. Carbohydrate Polymers, 207, 1-10. http://dx.doi.org/10.1016/j.carbpol.2018.11.061. PMid:30599988.

88 Gupta, A., Briffa, S. M., Swingler, S., Gibson, H., Kannappan, V., Adamus, G., Kowalczuk, M., Martin, C., & Radecka, I. (2020). Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromolecules, 21(5), 1802-1811. http://dx.doi.org/10.1021/acs.biomac.9b01724. PMid:31967794.

89 Faisul Aris, F. A., Mohd Fauzi, F. N. A., Tong, W. Y., & Syed Abdullah, S. S. (2019). Interaction of silver sulfadiazine wıth bacterial cellulose via ex-situ modification method as an alternative diabetic wound healing. Biocatalysis and Agricultural Biotechnology, 21, 101332. http://dx.doi.org/10.1016/j.bcab.2019.101332.

90 Ye, S., Jiang, L., Wu, J., Su, C., Huang, C., Liu, X., & Shao, W. (2018). Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. ACS Applied Materials & Interfaces, 10(6), 5862-5870. http://dx.doi.org/10.1021/acsami.7b16680. PMid:29345902.

91 Moradi, M., Tajik, H., Almasi, H., Forough, M., & Ezati, P. (2019). A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydrate Polymers, 222, 115030. http://dx.doi.org/10.1016/j.carbpol.2019.115030. PMid:31320095.

92 Halib, N., Ahmad, I., Grassi, M., & Grassi, G. (2019). The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications. International Journal of Pharmaceutics, 566, 631-640. http://dx.doi.org/10.1016/j.ijpharm.2019.06.017. PMid:31195074.

93 Frone, A. N., Panaitescu, D. M., Nicolae, C. A., Gabor, A. R., Trusca, R., Casarica, A., Stanescu, P. O., Baciu, D. D., & Salageanu, A. (2020). Bacterial cellulose sponges obtained with green cross-linkers for tissue engineering. Materials Science and Engineering C, 110, 110740. http://dx.doi.org/10.1016/j.msec.2020.110740. PMid:32204048.

94 Zhang, C., Cao, J., Zhao, S., Luo, H., Yang, Z., Gama, M., Zhang, Q., Su, D., & Wan, Y. (2020). Biocompatibility evaluation of bacterial cellulose as a scaffold material for tissue-engineered corneal stroma. Cellulose, 27(5), 2775-2784. http://dx.doi.org/10.1007/s10570-020-02979-0.

95 Zhang, W., Wang, X., Li, X. Y., Zhang, L. L., & Jiang, F. (2020). A 3D porous microsphere with multistage structure and component based on bacterial cellulose and collagen for bone tissue engineering. Carbohydrate Polymers, 236, 116043. http://dx.doi.org/10.1016/j.carbpol.2020.116043. PMid:32172857.

96 Hu, W., Chen, S., Zhou, B., Liu, L., Ding, B., & Wang, H. (2011). Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with bacterial cellulose membrane. Sensors and Actuators. B, Chemical, 159(1), 301-306. http://dx.doi.org/10.1016/j.snb.2011.07.014.

97 Moradi, M., Tajik, H., Almasi, H., Forough, M., & Ezati, P. (2019). A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydrate Polymers, 222, 115030. http://dx.doi.org/10.1016/j.carbpol.2019.115030. PMid:31320095.

98 Cai, Q., Hu, C., Yang, N., Wang, Q., Wang, J., Pan, H., Hu, Y., & Ruan, C. (2018). Enhanced activity and stability of industrial lipases immobilized onto spherelike bacterial cellulose. International Journal of Biological Macromolecules, 109, 1174-1181. http://dx.doi.org/10.1016/j.ijbiomac.2017.11.100. PMid:29157911.

99 Wang, X., Tang, J., Huang, J., & Hui, M. (2020). Production and characterization of bacterial cellulose membranes with hyaluronic acid and silk sericin. Colloids and Surfaces. B, Biointerfaces, 195, 111273. http://dx.doi.org/10.1016/j.colsurfb.2020.111273. PMid:32721822.

100 Muhsinin, S., Putri, N. T., Ziska, R., & Jafar, G. (2017). Bacterial cellulose from fermented banana peels (Musa paradisiaca) by Acetobacter xylinum as matrix of biocellulose mask. Journal of Pharmaceutical Sciences and Research, 9(2), 159-162.

101 Amnuaikit, T., Chusuit, T., Raknam, P., & Boonme, P. (2011). Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Medical Devices: Evidence and Research, 4(1), 77-81. http://dx.doi.org/10.2147/MDER.S20935. PMid:22915933.

102 Aramwit, P., & Bang, N. (2014). The characteristics of bacterial nanocellulose gel releasing silk sericin for facial treatment. BMC Biotechnology, 14(1), 104. http://dx.doi.org/10.1186/s12896-014-0104-x. PMid:25487808.

103 Urbina, L., Guaresti, O., Requies, J., Gabilondo, N., Eceiza, A., Corcuera, M. A., & Retegi, A. (2018). Design of reusable novel membranes based on bacterial cellulose and chitosan for the filtration of copper in wastewaters. Carbohydrate Polymers, 193, 362-372. http://dx.doi.org/10.1016/j.carbpol.2018.04.007. PMid:29773392.

104 Zhuang, S., & Wang, J. (2019). Removal of cesium ions using nickel hexacyanoferrates-loaded bacterial cellulose membrane as an effective adsorbent. Journal of Molecular Liquids, 294, 111682. http://dx.doi.org/10.1016/j.molliq.2019.111682.

105 Núñez, D., Cáceres, R., Ide, W., Varaprasad, K., & Oyarzún, P. (2020). An ecofriendly nanocomposite of bacterial cellulose and hydroxyapatite efficiently removes lead from water. International Journal of Biological Macromolecules, 165(Pt B), 2711-2720. http://dx.doi.org/10.1016/j.ijbiomac.2020.10.055. PMid:33069824.

106 Shoukat, A., Wahid, F., Khan, T., Siddique, M., Nasreen, S., Yang, G., Ullah, M. W., & Khan, R. (2019). Titanium oxide-bacterial cellulose bioadsorbent for the removal of lead ions from aqueous solution. International Journal of Biological Macromolecules, 129, 965-971. http://dx.doi.org/10.1016/j.ijbiomac.2019.02.032. PMid:30738165.

107 Luo, H., Feng, F., Yao, F., Zhu, Y., Yang, Z., & Wan, Y. (2020). Improved removal of toxic metal ions by incorporating graphene oxide into bacterial cellulose. Journal of Nanoscience and Nanotechnology, 20(2), 719-730. http://dx.doi.org/10.1166/jnn.2020.16902. PMid:31383067.

108 Viana, R. M., Sá, N. M. S. M., Barros, M. O., Borges, M. de F., & Azeredo, H. M. C. (2018). Nanofibrillated bacterial cellulose and pectin edible films added with fruit purees. Carbohydrate Polymers, 196, 27-32. http://dx.doi.org/10.1016/j.carbpol.2018.05.017. PMid:29891296.

109 Malheiros, P. S., Jozala, A. F., Pessoa-Jr., A., Vila, M. M. D. C., Balcão, V. M., & Franco, B. D. G. M. (2018). Immobilization of antimicrobial peptides from Lactobacillus sakei subsp. sakei 2a in bacterial cellulose: structural and functional stabilization. Food Packaging and Shelf Life, 17, 25-29. http://dx.doi.org/10.1016/j.fpsl.2018.05.001.

110 Albuquerque, R. M. B., Meira, H. M., Silva, I. D. L., Silva, C. J. G., Almeida, F. C. G., & Amorim, J. D. P. … Sarubbo, L. A. (2020). Production of a bacterial cellulose/poly(3-hydroxybutyrate) blend activated with clove essential oil for food packaging. Polymers & Polymer Composites. In press. http://dx.doi.org/10.1177/0967391120912098.

111 Sá, N. M. S. M., Mattos, A. L. A., Silva, L. M. A., Brito, E. S., Rosa, M. F., & Azeredo, H. M. C. (2020). From cashew byproducts to biodegradable active materials: bacterial cellulose-lignin-cellulose nanocrystal nanocomposite films. International Journal of Biological Macromolecules, 161, 1337-1345. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.269. PMid:32777430.

112 Almeida, D. M., Prestes, R. A., Pinheiro, L. A., Woiciechowski, A. L., & Wosiacki, G. (2013). Phisical, chemical and barrier properties in films made with bacterial celullose and potato starch blend. Polímeros, 23(4), 538-546. http://dx.doi.org/10.4322/polimeros.2013.038.

113 Barud, H. S., Ribeiro, S. J. L., Carone, C. L. P., Ligabue, R., Einloft, S., Queiroz, P. V. S., Borges, A. P. B., & Jahno, V. D. (2013). Optically transparent membrane based on bacterial cellulose/ polycaprolactone. Polímeros, 23(1), 135-138. http://dx.doi.org/10.1590/S0104-14282013005000018.

114 Amorim, J. D. P., Souza, K. C., Duarte, C. R., Silva Duarte, I., Ribeiro, F. A. S., Silva, G. S., Farias, P. M. A., Stingl, A., Costa, A. F. S., Vinhas, G. M., & Sarubbo, L. A. (2020). Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering: a review. Environmental Chemistry Letters, 18(3), 851-869. http://dx.doi.org/10.1007/s10311-020-00989-9.

115 Chen, X., Yuan, F., Zhang, H., Huang, Y., Yang, J., & Sun, D. (2016). Recent approaches and future prospects of bacterial cellulose-based electroconductive materials. Journal of Materials Science, 51(12), 5573-5588. http://dx.doi.org/10.1007/s10853-016-9899-2.

116 Bai, Y., Liu, R., Li, E., Li, X., Liu, Y., & Yuan, G. (2019). Graphene/Carbon Nanotube/Bacterial Cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications. Journal of Alloys and Compounds, 777, 524-530. http://dx.doi.org/10.1016/j.jallcom.2018.10.376.

117 Rebelo, A. R., Liu, C., Schäfer, K. H., Saumer, M., Yang, G., & Liu, Y. (2019). Poly(4-vinylaniline)/polyaniline bilayer-functionalized bacterial cellulose for flexible electrochemical biosensors. Langmuir, 35(32), 10354-10366. http://dx.doi.org/10.1021/acs.langmuir.9b01425. PMid:31318565.

118 Yuan, F., Huang, Y., Qian, J., Rahman, M. M., Ajayan, P. M., & Sun, D. (2020). Free-standing SnS/carbonized cellulose film as durable anode for lithium-ion batteries. Carbohydrate Polymers, 255, 117400. http://dx.doi.org/10.1016/j.carbpol.2020.117400. PMid:33436227.

119 Vilela, C., Silva, A. C. Q., Domingues, E. M., Gonçalves, G., Martins, M. A., Figueiredo, F. M. L., Santos, S. A. O., & Freire, C. S. R. (2020). Conductive polysaccharides-based proton-exchange membranes for fuel cell applications: the case of bacterial cellulose and fucoidan. Carbohydrate Polymers, 230, 115604. http://dx.doi.org/10.1016/j.carbpol.2019.115604. PMid:31887959.

120 Müller, D., Cercená, R., Gutiérrez Aguayo, A. J., Porto, L. M., Rambo, C. R., & Barra, G. M. O. (2016). Flexible PEDOT-nanocellulose composites produced by in situ oxidative polymerization for passive components in frequency filters. Journal of Materials Science Materials in Electronics, 27(8), 8062-8067. http://dx.doi.org/10.1007/s10854-016-4804-y.

121 Legnani, C., Barud, H. S., Caiut, J. M. A., Calil, V. L., Maciel, I. O., Quirino, W. G., Ribeiro, S. J. L., & Cremona, M. (2019). Transparent bacterial cellulose nanocomposites used as substrate for organic light-emitting diodes. Journal of Materials Science Materials in Electronics, 30(18), 16718-16723. http://dx.doi.org/10.1007/s10854-019-00979-w.

122 Müller, D., Mandelli, J. S., Marins, J. A., Soares, B. G., Porto, L. M., Rambo, C. R., & Barra, G. M. O. (2012). Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose, 19(5), 1645-1654. http://dx.doi.org/10.1007/s10570-012-9754-9.

123 Marins, J. A., Soares, B. G., Dahmouche, K., Ribeiro, S. J. L., Barud, H., & Bonemer, D. (2011). Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose, 18(5), 1285-1294. http://dx.doi.org/10.1007/s10570-011-9565-4.

124 Barud, H. S., Tercjak, A., Gutierrez, J., Viali, W. R., Nunes, E. S., Ribeiro, S. J. L., Jafellici, M., Nalin, M., & Marques, R. F. C. (2015). Biocellulose-based flexible magnetic paper. Journal of Applied Physics, 117(17), 1-5. http://dx.doi.org/10.1063/1.4917261.

125 Müller, D., Rambo, C. R., Porto, L. M., & Barra, G. M. O. (2011). Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synthetic Metals, 161(1-2), 106-111. http://dx.doi.org/10.1016/j.synthmet.2010.11.005.

126 Perotti, G. F., Barud, H. S., Messaddeq, Y., Ribeiro, S. J. L., & Constantino, V. R. L. (2011). Bacterial cellulose-laponite clay nanocomposites. Polymer, 52(1), 157-163. http://dx.doi.org/10.1016/j.polymer.2010.10.062.

127 Pinto, E. R. P., Barud, H. S., Silva, R. R., Palmieri, M., Polito, W. L., Calil, V. L., Cremona, M., Ribeiro, S. J. L., & Messaddeq, Y. (2015). Transparent composites prepared from bacterial cellulose and castor oil based polyurethane as substrates for flexible OLEDs. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 3(44), 11581-11588. http://dx.doi.org/10.1039/C5TC02359A.

128 Barud, H. S., Tercjak, A., Gutierrez, J., Viali, W. R., Nunes, E. S., Ribeiro, S. J. L., Jafellici, M., Nalin, M., & Marques, R. F. C. (2015). Biocellulose-based flexible magnetic paper. Journal of Applied Physics, 117(17), 1-5. http://dx.doi.org/10.1063/1.4917261.

129 Salvi, D. T. B., Barud, H. S., Caiut, J. M. A., Messaddeq, Y., & Ribeiro, S. J. L. (2012). Self-supported bacterial cellulose/boehmite organic-inorganic hybrid films. Journal of Sol-Gel Science and Technology, 63(2), 211-218. http://dx.doi.org/10.1007/s10971-012-2678-x.

130 Salvi, D. T. B., Barud, H. S., Pawlicka, A., Mattos, R. I., Raphael, E., Messaddeq, Y., & Ribeiro, S. J. L. (2014). Bacterial cellulose/triethanolamine based ion-conducting membranes. Cellulose, 21(3), 1975-1985. http://dx.doi.org/10.1007/s10570-014-0212-8.

131 Tercjak, A., Gutierrez, J., Barud, H. S., & Ribeiro, S. J. L. (2016). Switchable photoluminescence liquid crystal coated bacterial cellulose films with conductive response. Carbohydrate Polymers, 143, 188-197. http://dx.doi.org/10.1016/j.carbpol.2016.02.019. PMid:27083359.

132 Marins, J. A., Soares, B. G., Fraga, M., Müller, D., & Barra, G. M. O. (2014). Self-supported bacterial cellulose polyaniline conducting membrane as electromagnetic interference shielding material: effect of the oxidizing agent. Cellulose, 21(3), 1409-1418. http://dx.doi.org/10.1007/s10570-014-0191-9.

133 Pinto, E. R. P., Barud, H. S., Polito, W. L., Ribeiro, S. J. L., & Messaddeq, Y. (2013). Preparation and characterization of the bacterial cellulose/polyurethane nanocomposites. Journal of Thermal Analysis and Calorimetry, 114(2), 549-555. http://dx.doi.org/10.1007/s10973-013-3001-y.

134 Pinheiro, G. K., Muller, D., Serpa, R. B., Reis, F. T., Sartorelli, M. L., Schiavon, M. A., & Rambo, C. R. (2019). Flexible TiO 2 -coated nanocellulose membranes incorporated with CdTe as electrodes in photoelectrochemical cells. Journal of Materials Science Materials in Electronics, 30(2), 1891-1895. http://dx.doi.org/10.1007/s10854-018-0462-6.

135 Ahmed, J., Gultekinoglu, M., & Edirisinghe, M. (2020). Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnology Advances, 41, 107549. http://dx.doi.org/10.1016/j.biotechadv.2020.107549. PMid:32302653.

136 Fischer, M. R., Garcia, M. C. F., Nogueira, A. L., Porto, L. M., Schneider, A. L. dos S., & Pezzin, A. P. T. (2017). Biossíntese e caracterização de nanocelulose bacteriana para engenharia de tecidos. Revista Materia, 22(3), e11934. http://dx.doi.org/10.1590/s1517-707620170005.0270.

137 Barud, H. S., Regiani, T., Marques, R. F. C., Lustri, W. R., Messaddeq, Y., & Ribeiro, S. J. L. (2011). Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. Journal of Nanomaterials, 2011, 1-8. http://dx.doi.org/10.1155/2011/721631.

138 Cao, Y., Liu, M. Y., Xue, Z. W., Qiu, Y., Li, J., Wang, Y., & Wu, Q. K. (2019). Surface-structured bacterial cellulose loaded with hUSCs accelerate skin wound healing by promoting angiogenesis in rats. Biochemical and Biophysical Research Communications, 516(4), 1167-1174. http://dx.doi.org/10.1016/j.bbrc.2019.06.161. PMid:31284954.

139 Wichai, S., Chuysinuan, P., Chaiarwut, S., Ekabutr, P., & Supaphol, P. (2019). Development of bacterial cellulose/alginate/chitosan composites incorporating copper (II) sulfate as an antibacterial wound dressing. Journal of Drug Delivery Science and Technology, 51, 662-671. http://dx.doi.org/10.1016/j.jddst.2019.03.043.

140 Altun, E., Aydogdu, M. O., Koc, F., Crabbe-Mann, M., Brako, F., Kaur-Matharu, R., Ozen, G., Kuruca, S. E., Edirisinghe, U., Gunduz, O., & Edirisinghe, M. (2018). Novel making of bacterial cellulose blended polymeric fiber bandages. Macromolecular Materials and Engineering, 303(3), 1700607. http://dx.doi.org/10.1002/mame.201700607.

141 Wu, J., Yin, N., Chen, S., Weibel, D. B., & Wang, H. (2019). Simultaneous 3D cell distribution and bioactivity enhancement of bacterial cellulose (BC) scaffold for articular cartilage tissue engineering. Cellulose, 26(4), 2513-2528. http://dx.doi.org/10.1007/s10570-018-02240-9.

142 Ahn, S. J., Shin, Y. M., Kim, S. E., Jeong, S. I., Jeong, J. O., Park, J. S., Gwon, H.-J., Seo, D. E., Nho, Y.-C., Kang, S. S., Kim, C.-Y., Huh, J.-B., & Lim, Y.-M. (2015). Characterization of hydroxyapatite-coated bacterial cellulose scaffold for bone tissue engineering. Biotechnology and Bioprocess Engineering, 20(5), 948-955. http://dx.doi.org/10.1007/s12257-015-0176-z.

143 Torgbo, S., & Sukyai, P. (2019). Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering. Materials Chemistry and Physics, 237, 121868. http://dx.doi.org/10.1016/j.matchemphys.2019.121868.

144 Wang, B., Lv, X., Chen, S., Li, Z., Yao, J., Peng, X., Feng, C., Xu, Y., & Wang, H. (2018). Use of heparinized bacterial cellulose based scaffold for improving angiogenesis in tissue regeneration. Carbohydrate Polymers, 181, 948-956. http://dx.doi.org/10.1016/j.carbpol.2017.11.055. PMid:29254059.

145 Shao, W., Liu, H., Wang, S., Wu, J., Huang, M., Min, H., & Liu, X. (2016). Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydrate Polymers, 145, 114-120. http://dx.doi.org/10.1016/j.carbpol.2016.02.065. PMid:27106158.

146 Pavaloiu, R. D., Stoica-Guzun, A., Stroescu, M., Jinga, S. I., & Dobre, T. (2014). Composite films of poly(vinyl alcohol)-chitosan-bacterial cellulose for drug controlled release. International Journal of Biological Macromolecules, 68, 117-124. http://dx.doi.org/10.1016/j.ijbiomac.2014.04.040. PMid:24769089.

147 Woehl, M. A., Ono, L., Riegel Vidotti, I. C., Wypych, F., Schreiner, W. H., & Sierakowski, M. R. (2014). Bioactive nanocomposites of bacterial cellulose and natural hydrocolloids. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2(40), 7034-7044. http://dx.doi.org/10.1039/C4TB00706A. PMid:32262114.

148 Duarte, E. B., Chagas, B. S., Andrade, F. K., Brígida, A. I. S., Borges, M. F., Muniz, C. R., Souza, M. S. M., Fo., Morais, J. P. S., Feitosa, J. P. A., & Rosa, M. F. (2015). Production of hydroxyapatite-bacterial cellulose nanocomposites from agroindustrial wastes. Cellulose, 22(5), 3177-3187. http://dx.doi.org/10.1007/s10570-015-0734-8.

149 Barud, H. G. O., Barud, H. S., Cavicchioli, M., Amaral, T. S., Oliveira, O. B., Jr., Santos, D. M., Petersen, A. L., Celes, F., Borges, V. M., Oliveira, C. I., Oliveira, P. F., Furtado, R. A., Tavares, D. C., & Ribeiro, S. J. (2015). Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydrate Polymers, 128, 41-51. http://dx.doi.org/10.1016/j.carbpol.2015.04.007. PMid:26005138.

150 Ribeiro-Viana, R. M., Faria-Tischer, P. C. S., & Tischer, C. A. (2016). Preparation of succinylated cellulose membranes for functionalization purposes. Carbohydrate Polymers, 148, 21-28. http://dx.doi.org/10.1016/j.carbpol.2016.04.033. PMid:27185111.

151 Godinho, J. F., Berti, F. V., Müller, D., Rambo, C. R., & Porto, L. M. (2016). Incorporation of Aloe vera extracts into nanocellulose during biosynthesis. Cellulose, 23(1), 545-555. http://dx.doi.org/10.1007/s10570-015-0844-3.

152 Silva, R., Sierakowski, M. R., Bassani, H. P., Zawadzki, S. F., Pirich, C. L., Ono, L., & Freitas, R. A. (2016). Hydrophilicity improvement of mercerized bacterial cellulose films by polyethylene glycol graft. International Journal of Biological Macromolecules, 86, 599-605. http://dx.doi.org/10.1016/j.ijbiomac.2016.01.115. PMid:26845482.

153 Lucyszyn, N., Ono, L., Lubambo, A. F., Woehl, M. A., Sens, C. V., de Souza, C. F., & Sierakowski, M. R. (2016). Physicochemical and in vitro biocompatibility of films combining reconstituted bacterial cellulose with arabinogalactan and xyloglucan. Carbohydrate Polymers, 151, 889-898. http://dx.doi.org/10.1016/j.carbpol.2016.06.027. PMid:27474637.

154 Meneguin, A. B., Ferreira Cury, B. S., Santos, A. M., Franco, D. F., Barud, H. S., & Silva, E. C., Fo. (2017). Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydrate Polymers, 157, 1013-1023. http://dx.doi.org/10.1016/j.carbpol.2016.10.062. PMid:27987801.

155 Reis, E. M. D., Berti, F. V., Colla, G., & Porto, L. M. (2018). Bacterial nanocellulose-IKVAV hydrogel matrix modulates melanoma tumor cell adhesion and proliferation and induces vasculogenic mimicry in vitro. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 106(8), 2741-2749. http://dx.doi.org/10.1002/jbm.b.34055. PMid:29206331.

156 Lima, G. D. M., Sierakowski, M. R., Faria-Tischer, P. C. S., & Tischer, C. A. (2011). Characterisation of bacterial cellulose partly acetylated by dimethylacetamide/lithium chloride. Materials Science and Engineering C, 31(2), 190-197. http://dx.doi.org/10.1016/j.msec.2010.08.017.

157 Olyveira, G., Valido, D. P., Costa, L. M. M., Gois, P. B. P., Xavier, L., Fo. & Basmaji, P. (2011). First otoliths/collagen/bacterial cellulose nanocomposites as a potential scaffold for bone tissue regeneration. Journal of Biomaterials and Nanobiotechnology, 2(3), 239-243. http://dx.doi.org/10.4236/jbnb.2011.23030.

158 Courtenay, J. C., Johns, M. A., Galembeck, F., Deneke, C., Lanzoni, E. M., Costa, C. A., Scott, J. L., & Sharma, R. I. (2017). Surface modified cellulose scaffolds for tissue engineering. Cellulose, 24(1), 253-267. http://dx.doi.org/10.1007/s10570-016-1111-y. PMid:32355428.

159 Saska, S., Pigossi, S. C., Oliveira, G. J. P. L., Teixeira, L. N., Capela, M. V., Gonçalves, A., Oliveira, P. T., Messaddeq, Y., Ribeiro, S. J. L., Gaspar, A. M. M., & Marchetto, R. (2018). Biopolymer-based membranes associated with osteogenic growth peptide for guided bone regeneration Biopolymer-based membranes associated with osteogenic growth peptide for guided bone regeneration. Biomedical Materials, 13(3), 035009. http://dx.doi.org/10.1088/1748-605X/aaaa2d. PMid:29363620.

160 Fontes, M. L., Meneguin, A. B., Tercjak, A., Gutierrez, J., Cury, B. S. F., Santos, A. M., Ribeiro, S. J. L., & Barud, H. S. (2018). Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydrate Polymers, 179, 126-134. http://dx.doi.org/10.1016/j.carbpol.2017.09.061. PMid:29111035.

161 Peres, M. F. S., Nigoghossian, K., Primo, F. L., Saska, S., Capote, T. S. O., Caminaga, R. M. S., Messaddeq, Y., Ribeiro, S. J. L., & Tedesco, A. C. (2016). Bacterial cellulose membranes as a potential drug delivery system for photodynamic therapy of skin cancer. Journal of the Brazilian Chemical Society, 27(11), 1949-1959. http://dx.doi.org/10.5935/0103-5053.20160080.

162 Celes, F. S., Trovatti, E., Khouri, R., Van Weyenbergh, J., Ribeiro, S. J. L., Borges, V. M., Barud, H. S., & de Oliveira, C. I. (2016). DETC-based bacterial cellulose bio-curatives for topical treatment of cutaneous leishmaniasis. Scientific Reports, 6(1), 38330. http://dx.doi.org/10.1038/srep38330. PMid:27922065.

163 Picheth, G. F., Pirich, C. L., Sierakowski, M. R., Woehl, M. A., Sakakibara, C. N., Souza, C. F., Martin, A. A., Silva, R., & Freitas, R. A. (2017). Bacterial cellulose in biomedical applications: a review. International Journal of Biological Macromolecules, 104(Pt A), 97-106. http://dx.doi.org/10.1016/j.ijbiomac.2017.05.171. PMid:28587970.

164 World Health Organization (WHO) (2016). Dengue Control: Epidemiology (2020, September 15). Retrieved from https://www.who.int/denguecontrol/epidemiology/en/

165 Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R., Simmons, C. P., Scott, T. W., Farrar, J. J., & Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504-507. http://dx.doi.org/10.1038/nature12060. PMid:23563266.

166 Coelho, F., Vale Braido, G. V., Cavicchioli, M., Mendes, L. S., Specian, S. S., Franchi, L. P., Lima Ribeiro, S. J., Messaddeq, Y., Scarel-Caminaga, R. M., & O Capote, T. S. (2019). Toxicity of therapeutic contact lenses based on bacterial cellulose with coatings to provide transparency. Contact Lens & Anterior Eye, 42(5), 512-519. http://dx.doi.org/10.1016/j.clae.2019.03.006. PMid:30948195.

167 Souza, F. C., Olival-Costa, H., da Silva, L., Pontes, P. A., & Lancellotti, C. L. P. (2011). Bacterial cellulose as laryngeal medialization material: an experimental study. Journal of Voice, 25(6), 765-769. http://dx.doi.org/10.1016/j.jvoice.2010.07.005. PMid:21051197.

168 Maria, L. C. S., Santos, A. L. C., Oliveira, P. C., Valle, A. S. S., Barud, H. S., Messaddeq, Y., & Ribeiro, S. J. L. (2010). Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polímeros: Ciência e Tecnologia, 20(1), 72-77. http://dx.doi.org/10.1590/S0104-14282010005000001.

169 Araújo, I. M. S., Silva, R. R., Pacheco, G., Lustri, W. R., Tercjak, A., Gutierrez, J., Santos, J. R., Jr., Azevedo, F. H. C., Figuêredo, G. S., Vega, M. L., Ribeiro, S. J. L., & Barud, H. S. (2018). Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydrate Polymers, 179, 341-349. http://dx.doi.org/10.1016/j.carbpol.2017.09.081. PMid:29111060.

170 Lazarini, S. C., Aquino, R., Amaral, A. C., Corbi, F. C. A., Corbi, P. P., Barud, H. S., & Lustri, W. R. (2016). Characterization of bilayer bacterial cellulose membranes with different fiber densities: a promising system for controlled release of the antibiotic ceftriaxone. Cellulose, 23(1), 737-748. http://dx.doi.org/10.1007/s10570-015-0843-4.

171 Wei, B., Yang, G., & Hong, F. (2011). Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydrate Polymers, 84(1), 533-538. http://dx.doi.org/10.1016/j.carbpol.2010.12.017.

172 Marquele-Oliveira, F., da Silva Barud, H., Torres, E. C., Machado, R. T. A., Caetano, G. F., Leite, M. N., Frade, M. A. C., Ribeiro, S. J. L., & Berretta, A. A. (2019). Development, characterization and pre-clinical trials of an innovative wound healing dressing based on propolis (EPP-AF®)-containing self-microemulsifying formulation incorporated in biocellulose membranes. International Journal of Biological Macromolecules, 136, 570-578. http://dx.doi.org/10.1016/j.ijbiomac.2019.05.135. PMid:31226369.

173 Picolotto, A., Pergher, D., Pereira, G. P., Machado, K. G., Barud, H. S., Roesch-Ely, M., Gonzalez, M. H., Tasso, L., Figueiredo, J. G., & Moura, S. (2019). Bacterial cellulose membrane associated with red propolis as phytomodulator: improved healing effects in experimental models of diabetes mellitus. Biomedicine and Pharmacotherapy, 112, 108640. http://dx.doi.org/10.1016/j.biopha.2019.108640. PMid:30784929.

174 Moraes, P. R. F. S., Saska, S., Barud, H., Lima, L. R., Martins, V. C. A., Plepis, A. M. G., Ribeiro, S. J. L., & Gaspar, A. M. M. (2016). Bacterial cellulose/collagen hydrogel for wound healing. Materials Research, 19(1), 106-116. http://dx.doi.org/10.1590/1980-5373-MR-2015-0249.

175 Saska, S., Barud, H. S., Gaspar, A. M. M., Marchetto, R., Ribeiro, S. J. L., & Messaddeq, Y. (2011). Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. International Journal of Biomaterials, 2011, 175362. http://dx.doi.org/10.1155/2011/175362. PMid:21961004.

176 Saska, S., Scarel-Caminaga, R. M., Teixeira, L. N., Franchi, L. P., Dos Santos, R. A., Gaspar, A. M., de Oliveira, P. T., Rosa, A. L., Takahashi, C. S., Messaddeq, Y., Ribeiro, S. J., & Marchetto, R. (2012). Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. Journal of Materials Science. Materials in Medicine, 23(9), 2253-2266. http://dx.doi.org/10.1007/s10856-012-4676-5. PMid:22622695.

177 Coelho, F., Cavicchioli, M., Specian, S. S., Scarel-Caminaga, R. M., Penteado, L. A., Medeiros, A. I., Ribeiro, S. J. L., & Capote, T. S. O. (2019). Bacterial cellulose membrane functionalized with hydroxiapatite and anti-bone morphogenetic protein 2: A promising material for bone regeneration. PLoS One, 14(8), e0221286. http://dx.doi.org/10.1371/journal.pone.0221286. PMid:31425530.

178 Massari, K. V., Marinho, G. O., Silva, J. L., Holgado, L. A., Leão, A. L., Chaves, M. R. M., & Kinoshita, A. (2015). Tissue reaction after subcutaneous implantation of a membrane composed of bacterial cellulose embedded with hydroxyapatite. Dental, Oral, and Craniofacial Research, 1(2), 25-30. http://dx.doi.org/10.15761/docr.1000106.

179 Saska, S., Teixeira, L. N., Castro Raucci, L. M. S., Scarel-Caminaga, R. M., Franchi, L. P., Santos, R. A., Santagneli, S. H., Capela, M. V., Oliveira, P. T., Takahashi, C. S., Gaspar, A. M. M., Messaddeq, Y., Ribeiro, S. J. L., & Marchetto, R. (2017). Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide bone regeneration. International Journal of Biological Macromolecules, 103, 467-476. http://dx.doi.org/10.1016/j.ijbiomac.2017.05.086. PMid:28527999.

180 Saska, S., Teixeira, L. N., Tambasco de Oliveira, P., Minarelli Gaspar, A. M., Lima Ribeiro, S. J., Messaddeq, Y., & Marchetto, R. (2012). Bacterial cellulose-collagen nanocomposite for bone tissue engineering. Journal of Materials Chemistry, 22(41), 22102-22112. http://dx.doi.org/10.1039/c2jm33762b.

181 Birkheur, S., Faria-Tischer, P. C. de S., Tischer, C. A., Pimentel, E. F., Fronza, M., Endringer, D. C., Butera, A. P., & Ribeiro-Viana, R. M. (2017). Enhancement of fibroblast growing on the mannosylated surface of cellulose membranes. Materials Science and Engineering C, 77, 672-679. http://dx.doi.org/10.1016/j.msec.2017.04.006. PMid:28532078.

182 Souza, C. F., Lucyszyn, N., Woehl, M. A., Riegel-Vidotti, I. C., Borsali, R., & Sierakowski, M. R. (2013). Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydrate Polymers, 93(1), 144-153. http://dx.doi.org/10.1016/j.carbpol.2012.04.062. PMid:23465913.

183 Li, G., Sun, K., Li, D., Lv, P., Wang, Q., Huang, F., & Wei, Q. (2016). Biosensor based on bacterial cellulose-Au nanoparticles electrode modified with laccase for hydroquinone detection. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 509, 408-414. http://dx.doi.org/10.1016/j.colsurfa.2016.09.028.

184 Qin, D., Hu, X., Dong, Y., Mamat, X., Li, Y., Wågberg, T., & Hu, G. (2018). An electrochemical sensor based on green γ-AlOOH-carbonated bacterial cellulose hybrids for simultaneous determination trace levels of Cd(II) and Pb(II) in drinking water. Journal of the Electrochemical Society, 165(7), B328-B334. http://dx.doi.org/10.1149/2.1321807jes.

185 Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods: a review. Carbohydrate Polymers, 219, 63-76. http://dx.doi.org/10.1016/j.carbpol.2019.05.008. PMid:31151547.

186 Hu, W., Chen, S., Liu, L., Ding, B., & Wang, H. (2011). Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sensors and Actuators. B, Chemical, 157(2), 554-559. http://dx.doi.org/10.1016/j.snb.2011.05.021.

187 Pirsa, S., & Chavoshizadeh, S. (2018). Design of an optical sensor for ethylene based on nanofiber bacterial cellulose film and its application for determination of banana storage time. Polymers for Advanced Technologies, 29(5), 1385-1393. http://dx.doi.org/10.1002/pat.4250.

188 Ghasemi, S., Bari, M. R., Pirsa, S., & Amiri, S. (2020). Use of bacterial cellulose film modified by polypyrrole/TiO2-Ag nanocomposite for detecting and measuring the growth of pathogenic bacteria. Carbohydrate Polymers, 232, 115801. http://dx.doi.org/10.1016/j.carbpol.2019.115801. PMid:31952600.

189 Roy, S., & Rhim, J. W. (2020). Anthocyanin food colorant and its application in pH-responsive color change indicator films. Critical Reviews in Food Science and Nutrition. In press. http://dx.doi.org/10.1080/10408398.2020.1776211. PMid:32543217.

190 Żur, J., Piński, A., Michalska, J., Hupert-Kocurek, K., Nowak, A., Wojcieszyńska, D., & Guzik, U. (2020). A whole-cell immobilization system on bacterial cellulose for the paracetamol-degrading Pseudomonas moorei KB4 strain. International Biodeterioration & Biodegradation, 149, 104919. http://dx.doi.org/10.1016/j.ibiod.2020.104919.

191 Li, D., Ao, K., Wang, Q., Lv, P., & Wei, Q. (2016). Preparation of Pd/bacterial cellulose hybrid nanofibers for dopamine detection. Molecules, 21(5), 618. http://dx.doi.org/10.3390/molecules21050618. PMid:27187327.

192 Bayazidi, P., Almasi, H., & Asl, A. K. (2018). Immobilization of lysozyme on bacterial cellulose nanofibers: characteristics, antimicrobial activity and morphological properties. International Journal of Biological Macromolecules, 107(Pt B), 2544-2551. http://dx.doi.org/10.1016/j.ijbiomac.2017.10.137. PMid:29079438.

193 Żywicka, A., Banach, A., Junka, A. F., Drozd, R., & Fijałkowski, K. (2019). Bacterial cellulose as a support for yeast immobilization: correlation between carrier properties and process efficiency. Journal of Biotechnology, 291, 1-6. http://dx.doi.org/10.1016/j.jbiotec.2018.12.010. PMid:30579888.

194 Vasconcelos, N. F., Cunha, A. P., Ricardo, N. M. P. S., Freire, R. S., Vieira, L., Brígida, A. I. S., Borges, M. F., Rosa, M. F., Vieira, R. S., & Andrade, F. K. (2020). Papain immobilization on heterofunctional membrane bacterial cellulose as a potential strategy for the debridement of skin wounds. International Journal of Biological Macromolecules, 165(Pt B), 3065-3077. http://dx.doi.org/10.1016/j.ijbiomac.2020.10.200. PMid:33127544.

195 Vasconcelos, N. F., Andrade, F. K., Vieira, L., Vieira, R. S., Vaz, J. M., Chevallier, P., Mantovani, D., Borges, M. F., & Rosa, M. F. (2020). Oxidized bacterial cellulose membrane as support for enzyme immobilization: properties and morphological features. Cellulose, 27(6), 3055-3083. http://dx.doi.org/10.1007/s10570-020-02966-5.

196 Gomes, N. O., Carrilho, E., Machado, S. A. S., & Sgobbi, L. F. (2020). Bacterial cellulose-based electrochemical sensing platform: a smart material for miniaturized biosensors. Electrochimica Acta, 349, 136341. http://dx.doi.org/10.1016/j.electacta.2020.136341.

197 Bianchet, R. T., Vieira Cubas, A. L., Machado, M. M., & Siegel Moecke, E. H. (2020). Applicability of bacterial cellulose in cosmetics: bibliometric review. Biotechnology Reports, 27, e00502. http://dx.doi.org/10.1016/j.btre.2020.e00502. PMid:32695618.

198 Perugini, P., Bleve, M., Redondi, R., Cortinovis, F., & Colpani, A. (2020). In vivo evaluation of the effectiveness of biocellulose facial masks as active delivery systems to skin. Journal of Cosmetic Dermatology, 19(3), 725-735. http://dx.doi.org/10.1111/jocd.13051. PMid:31301106.

199 Stasiak-Różańska, L., & Płoska, J. (2018). Study on the use of microbial cellulose as a biocarrier for 1,3-dihydroxy-2-propanone and its potential application in industry. Polymers, 10(4), 438. http://dx.doi.org/10.3390/polym10040438. PMid:30966473.

200 Fernandes, I. A. A., Pedro, A. C., Ribeiro, V. R., Bortolini, D. G., Ozaki, M. S. C., Maciel, G. M., & Haminiuk, C. W. I. (2020). Bacterial cellulose: from production optimization to new applications. International Journal of Biological Macromolecules, 164, 2598-2611. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.255. PMid:32750475.

201 Pacheco, G., Mello, C. V., Chiari-Andréo, B. G., Isaac, V. L. B., Ribeiro, S. J. L., Pecoraro, É., & Trovatti, E. (2018). Bacterial cellulose skin masks: properties and sensory tests. Journal of Cosmetic Dermatology, 17(5), 840-847. http://dx.doi.org/10.1111/jocd.12441. PMid:28963772.

6085c253a953954a6a0b8483 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections