Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Polyaniline-based electrospun polycaprolactone nanofibers: preparation and characterization

Juliana Donato de Almeida Cantalice; Edu Grieco Mazzini Júnior; Johnnatan Duarte de Freitas; Rosanny Christinny da Silva; Roselena Faez; Ligia Maria Manzine Costa; Adriana Santos Ribeiro

Downloads: 0
Views: 59


This work provides a convenient strategy for preparation of conducting polycaprolactone (PCL)/polyaniline (PAni) nanofibers, useful for development of optoelectronic sensors and devices. PCL/PAni nanofibers were obtained by electrospinning technique and characterized by SEM, FTIR, thermal analysis, and DC electrical conductivity. The influence of the experimental conditions in the electrospinning process, such as the applied voltage, on the nanofiber morphology was discussed in detail. Incorporation of PAni into PCL nanofibers significantly increased the electrical conductivity from a non-detectable level for the neat PCL to 0.032 ± 0.022 S/cm for the nanofibers containing 7.5 wt.% PAni. Therefore, electrospun PCL/PAni nanofiber mats presented optical and electrical properties, that awaken the possibility of applications for these materials as acid-base sensors and electrochromic devices.


electrospinning, nanofibers, polyaniline, polycaprolactone


1 Razak, S. I. A., Wahab, I. F., Fadil, F., Dahli, F. N., Khudzari, A. Z. M., & Adeli, H. (2005). A review of electrospun conductive polyaniline based nanofiber composites and blends: processing, features, applications, and future directions. Advances in Materials Science and Engineering, 2005, 356286. http://dx.doi.org/10.1155/2015/356286.

2 Picciani, P. H. S., Medeiros, E. S., Pan, Z., Orts, W. J., Mattoso, L. H. C., & Soares, B. G. (2009). Development of conducting polyaniline/poly(lactic acid) nanofibers by electrospinning. Journal of Applied Polymer Science, 112(2), 744-753. http://dx.doi.org/10.1002/app.29447.

3 Erden, F., Lai, S. C., Chi, H., Wang, F. K., & He, C. (2017). Tailoring the diameters of polyaniline nanofibers for sensor application. ACS Omega, 2(10), 6506-6513. http://dx.doi.org/10.1021/acsomega.7b00544. PMid:31457252.

4 Trchová, M., Jasenská, D., Bláha, M., Prokeš, J., & Stejskal, J. (2020). Conducting polyaniline prepared in the solutions of formic acid: does finctionalization with carboxyl groups occur? Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 235, 118300. http://dx.doi.org/10.1016/j.saa.2020.118300. PMid:32278150.

5 Gonçalves, R. V., Zanini, M. L., Malmonge, J. A., Bonnaud, L., & Basso, N. R. S. (2018). Cashew nut shell liquid, a valuable raw material for generating semiconductive polyaniline nanofibers. Polímeros Ciência e Tecnologia, 28(1), 61-68. http://dx.doi.org/10.1590/0104-1428.01417.

6 Ashraf, S. S., Frounchi, M., & Dadbin, S. (2020). Gamma irradiated electro-conductive polylactic acid / polyaniline nanofibers. Synthetic Metals, 259, 116204. http://dx.doi.org/10.1016/j.synthmet.2019.116204.

7 Xia, Y., Wiesinger, J. M., MacDiarmid, A. G., & Epstein, A. J. (1995). Camphorsulfonic acid fully doped polyaniline emeraldine salt conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method. Chemistry of Materials, 7(3), 443-445. http://dx.doi.org/10.1021/cm00051a002.

8 Bhadra, J., Alkareem, A., & Al-Thani, N. (2020). A review of advances in the preparation and application of polyaniline based thermoset blends and composites. Journal of Polymer Research, 27(5), 122. http://dx.doi.org/10.1007/s10965-020-02052-1.

9 Silva, R. C., Sarmento, M. V., Nogueira, F. A. R., Tonholo, J., Mortimer, R. J., Faez, R., & Ribeiro, A. S. (2014). Enhancing the electrochromic response of polyaniline films by the preparation of hybrid materials based on polyaniline, chitosan and organically modified clay. RSC Advances, 4(29), 14948-14955. http://dx.doi.org/10.1039/C3RA47474G.

10 Silva, R. C., Sarmento, M. V., Faez, R., Mortimer, R. J., & Ribeiro, A. S. (2016). Electrochromic properties of polyaniline-based hybrid organic/inorganic materials. Journal of the Brazilian Chemical Society, 27, 1847-1857. http://dx.doi.org/10.5935/0103-5053.20160068.

11 Zhang, Y., & Rutledge, G. C. (2012). Electrical conductive of electrospun polyaniline and polyaniline-blend fibers and mats. Macromolecules, 45(10), 4238-4246. http://dx.doi.org/10.1021/ma3005982.

12 Merlini, C., Pegoretti, A., Araujo, T. M., Ramoa, S. D. A. S., Schreiner, W. H., & Barra, G. M. O. (2016). Electrospinning of doped and undoped-polyaniline/poly(vinylidene fluoride) blends. Synthetic Metals, 213, 34-41. http://dx.doi.org/10.1016/j.synthmet.2015.12.024.

13 Perdigão, P., Morais Faustino, B. M., Faria, J., Canejo, J. P., Borges, J. P., Ferreira, I., & Baptista, A. C. (2020). Conductive electrospun polyaniline/polyvinyl pyrrolidone nanofibers: electrical and morphological characterization of new yarns for electronic textiles. Fibers, 8(4), 24. http://dx.doi.org/10.3390/fib8040024.

14 Pinto, N. J., Johnson, A. T., Jr., MacDiarmid, A. G., Mueller, C. H., Theofylaktos, N., Robinson, D. C., & Miranda, F. A. (2003). Electrospun polyaniline/polyethylene oxide nanofiber field effect transistor. Applied Physics Letters, 83(20), 4244-4246. http://dx.doi.org/10.1063/1.1627484.

15 Li, C., Chartuprayoon, N., Bosze, W., Low, K., Lee, K. H., Nam, J., & Myung, N. V. (2014). Electrospun polyaniline/poly (ethylene oxide) composite nanofibers based gas sensor. Electroanalysis, 26(4), 711-722. http://dx.doi.org/10.1002/elan.201300641.

16 Zhu, Y., Zhang, J., Zheng, Y., Huang, Z., Feng, L., & Jiang, L. (2006). Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments. Advanced Functional Materials, 16(4), 568-574. http://dx.doi.org/10.1002/adfm.200500624.

17 Zhao, Y., Zhang, Z., Yu, L., & Tang, Q. (2016). Electrospinning of polyaniline microfibers for anticorrosion coatings: an avenue of enhancing anticorrosion behaviors. Synthetic Metals, 212, 84-90. http://dx.doi.org/10.1016/j.synthmet.2015.12.007.

18 Matysiak, W., Tanski, T., Smok, W., Golombek, K., & Schab-Balcerzak, E. (2020). Effect of conductive polymers on the optical properties of electrospun polyacrylonitrile nanofibers filled by polypyrrole, polythiophene and polyaniline. Applied Surface Science, 509, 145068. http://dx.doi.org/10.1016/j.apsusc.2019.145068.

19 Shahi, M., Moghimi, A., Naderizadeh, B., & Maddah, B. (2011). Electrospun PVA-PANI and PVA-PANI-AgNO3 composite nanofibers. Scientia Iranica C, 18(6), 1327-1331. http://dx.doi.org/10.1016/j.scient.2011.08.013.

20 Shadi, L., Karimi, M., Ramazani, S., & Entezami, A. A. (2014). Preparation of electrospun nanofibers of star-shaped polycaprolactone and its blends with polyaniline. Journal of Materials Science, 49(14), 4844-4854. http://dx.doi.org/10.1007/s10853-014-8185-4.

21 Chen, Y., Li, C., Hou, Z., Huang, S., Liu, B., He, F., Luo, L., & Lin, J. (2015). Polyaniline electrospinning composite fibers for orthotopic photothermal treatment of tumors in vivo. New Journal of Chemistry, 39(6), 4987-4993. http://dx.doi.org/10.1039/C5NJ00327J.

22 Chen, M.-C., Sun, Y.-C., & Chen, Y.-H. (2013). Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Acta Biomaterialia, 9(3), 5562-5572. http://dx.doi.org/10.1016/j.actbio.2012.10.024. PMid:23099301.

23 Liverani, L., & Boccaccini, A. R. (2016). Versatile production of poly(epsilon-caprolactone) fibers by electrospinning using benign solvents. Nanomaterials, 6(4), 75. http://dx.doi.org/10.3390/nano6040075. PMid:28335202.

24 Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: methods, materials, and applications. Chemical Reviews, 119(8), 5298. http://dx.doi.org/10.1021/acs.chemrev.8b00593. PMid:30916938.

25 Ninago, M. D., Ciolino, A. E., & Villar, M. A. (2020). Improvement in poly(e-caprolactone) bio-activity. Structural characterization and in vitro assessment. International Journal of Polymeric Materials and Polymeric Biomaterials, 69(4), 201-210. http://dx.doi.org/10.1080/00914037.2018.1552864.

26 Woodruff, M. A., & Hutmacher, D. W. (2020). The return of a forgotten polymer: polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002.

27 Ku, S. H., Lee, S. H., & Park, C. B. (2012). Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation. Biomaterials, 33(26), 6098-6104. http://dx.doi.org/10.1016/j.biomaterials.2012.05.018. PMid:22681977.

28 Garrudo, F. F. F., Chapman, C. A., Hoffman, P. R., Udangawa, R. W., Silva, J. C., Mikael, P. E., Rodrigues, C. A. V., Cabral, J. M. S., Morgado, J. M. F., Ferreira, F. C., & Linhardt, R. J. (2019). Polyaniline-polycaprolactone blended nanofibers for neural cell culture. European Polymer Journal, 117, 28-37. http://dx.doi.org/10.1016/j.eurpolymj.2019.04.048.

29 Jürgensen, N., Zimmermann, J., Morfa, A. J., & Hernandez-Sosa, G. (2016). Biodegradable polycaprolactone as ion solvating polymer for solution-processed light-emitting electrochemical cells. Scientific Reports, 6(1), 36643. http://dx.doi.org/10.1038/srep36643. PMid:27811991.

30 Dierckx, W., Oosterbaan, W. D., Bolsée, J.-C., Maes, W., Vanderzande, D., & Manca, J. (2014). Poly(3-alkylthiophene) nanofibers for optoelectronic devices. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2(29), 5730-5746. http://dx.doi.org/10.1039/c4tc00308j.

31 Santa-Cruz, P. A., & Teles, F. S. (2003). Spectra Lux Software v. 2.0 Beta, Ponto Quântico Nanodispositivos/RENAMI, Brasil. Recife: UFPE.

32 Wyszecki, G., & Stiles, W. S. (1982). Color science: concepts and methods, quantitative data and formulae (2nd ed). New York: John Wiley & Sons.

33 Deitzel, J. M., Kleinmeyer, J., Harris, D., & Tan, N. C. B. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261-272. http://dx.doi.org/10.1016/S0032-3861(00)00250-0.

34 Asturias, G. E., MacDiarmid, A. G., McCall, R. P., & Epstein, A. J. (1989). The oxidation state of “emeraldine” base. Synthetic Metals, 29(1), 157-162. http://dx.doi.org/10.1016/0379-6779(89)90291-9.

35 Cao, Y., Li, S., Xue, Z., & Guo, D. (1986). Spectroscopic and electrical characterization of some aniline oligomers and polyaniline. Synthetic Metals, 16(3), 305-315. http://dx.doi.org/10.1016/0379-6779(86)90167-0.

36 Mazzini, E. G., Jr. & Cantalice, J. D., Assis, A. M. L., Freitas, J. D., Costa, L. M. M., & Ribeiro, A. S. (2020). Fluorescent polymer nanofibers based on polycaprolactone and dansyl derivatives for development of latent fingerprints. Journal of Applied Polymer Science, 137(46), 49804. http://dx.doi.org/10.1002/app.49804.

37 Ramírez-Cedillo, E., Ortega-Lara, W., Rocha-Pizaña, M. R., Gutierrez-Uribe, J. A., Elías-Zúñiga, A., & Rodríguez, G. A. (2019). Electrospun polycaprolactone fibrous membranes containing Ag, TiO2 and Na2Ti6O13 particles for potential use in bone regeneration. Membranes, 9(1), 12. http://dx.doi.org/10.3390/membranes9010012. PMid:30634630.

38 Gu, B. K., Kim, M. S., Kang, C. M., Kim, J.-I., Park, S. J., & Kim, C.-H. (2014). Fabrication of conductive-polymer-based nanofiber scaffolds for tissue engineering applications. Journal of Nanoscience and Nanotechnology, 14(10), 7621-7626. http://dx.doi.org/10.1166/jnn.2014.9575. PMid:25942837.

39 Kulkarni, M. V., & Viswanath, A. K. (2004). Scanning electron microscopy, spectroscopy, and thermal studies of polyaniline doped with various sulfonic acids. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 41(10), 1173-1186. http://dx.doi.org/10.1081/MA-200026566.

40 Traore, M. K., Stevenson, W. T. K., McCormick, B. J., Dorey, R. C., Wen, S., & Meyers, D. (1991). Thermal analysis of polyaniline Part I. Thermal degradation of HCl-doped emeraldine base. Synthetic Metals, 40(2), 137-153. http://dx.doi.org/10.1016/0379-6779(91)91770-B.

41 Wu, J. C.-C., Ray, S., Gizdavic-Nikolaidis, M., Uy, B., Swift, S., Jin, J., & Cooney, R. P. (2014). Nanostructured bioactive material based on polycaprolactone and polyaniline fiber-scaffolds. Synthetic Metals, 198, 41-50. http://dx.doi.org/10.1016/j.synthmet.2014.09.017.

609d1b63a95395127377b047 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections