Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Development of active PHB/PEG antimicrobial films incorporating clove essential oil

Ivo Diego de Lima Silva; Michelle Félix de Andrade; Viviane Fonseca Caetano; Fernando Hallwass; Andréa Monteiro Santana Silva Brito; Glória Maria Vinhas

Downloads: 4
Views: 742


In this work were developed and evaluated new antimicrobial films of polyhydroxybutyrate (PHB) additivated with polyethyleneglycol (PEG) and clove essential oil (CEO). The PHB/PEG/CEO films were prepared using the solution casting technique. The CEO concentrations varied between 0.0 and 15% (w/w), related to the total mass (1.4 g), without considering the solvent used. The CG-MS analysis showed that the major component of the CEO was eugenol (72.96%). The antimicrobial activity from the CEO was evaluated against three bacteria (E. coli, E. aerogenes and S. aureus). The migration of CEO in the films occurred with all tested simulants. Thermal analysis has shown that the addition of 15% w/w of the CEO causes the biggest changes in the chemical structure of the material, resulting in less energy during film processing. The mechanical data demonstrated that the addition of 15% w/w of the CEO results in more flexible films.


active packaging antimicrobial films, clove essential oil, Polyhydroxybutyrate, Polyethyleneglycol


1 Landim, A. P. M., Bernardo, C. O., Martins, I. B. A., Francisco, M. R., Santos, M. B., Melo, N. R. (2016). Sustainability concerning food packaging in Brazil. Polímeros: Ciência e Tecnologia, 26(no spe), 82-92. http://dx.doi.org/10.1590/0104-1428.1897

2 Wani, A. A., Singh, P., & Langowski, H. C. (2014). Packaging. In Y. Motarjemi & L. Gorris (Eds.), Encyclopedia of food safety (pp. 211-218). United Kingdom: Elsevier Science. http://dx.doi.org/10.1016/B978-0-12-378612-8.00273-0.

3 Muppalla, S. R., Kanatt, S. R., Chawla, S. P., & Sharma, A. (2014). Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Packaging and Shelf Life, 2(2), 51-58. http://dx.doi.org/10.1016/j.fpsl.2014.07.002.

4 Kuswandi, B., & Jumina. (2020). Active and intelligent packaging, safety, and quality controls. In M. W. Siddiqui (Eds.), Fresh-Cut Fruits and Vegetables: Technologies and mechanisms for safety control (pp. 243-294). United Kingdom: Academic Press. http://dx.doi.org/10.1016/B978-0-12-816184-5.00012-4

5 Lloyd, K., Mirosa, M., & Birch, J. (2018). Active and Intelligent Packaging. In L. Melton, F. Shahidi, & P. Varelis (Eds.), Encyclopedia of Food Chemistry: Reference Module in Food Science (pp. 177-182). United Kingdom: Academic Press. http://dx.doi.org/10.1016/B978-0-08-100596-5.22421-9

6 El-Wakil, N. A., Hassan, E. A., Abou-Zeid, R. E., & Dufresne, A. (2015). Development of wheat gluten/nanocellulose/titanium dioxidenanocomposites for active food packaging. Carbohydrate Polymers, 124, 337-346. http://dx.doi.org/10.1016/j.carbpol.2015.01.076. PMid:25839828.

7 Gouvêa, D. M., Mendonça, R. C. S., Soto, M. L., & Cruz, R. S. (2015). Acetate cellulose film with bacteriophages for potential antimicrobial use in food packaging. Lebensmittel-Wissenschaft + Technologie, 63(1), 85-91. http://dx.doi.org/10.1016/j.lwt.2015.03.014.

8 Wrona, M., Bentayeb, K., & Nerín, C. (2015). A novel active packaging for extending the shelf-life of fresh mushrooms (Agaricus bisporus). Food Control, 54, 200-207. http://dx.doi.org/10.1016/j.foodcont.2015.02.008.

9 Zhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27-35. http://dx.doi.org/10.1016/j.aiepr.2019.11.002.

10 Takma, D. K., & Korel, F. (2019). Active packaging films as a carrier of black cumin essential oil: Development and effect on quality and shelf-life of chicken breast meat. Food Packaging and Shelf Life, 19, 210-217. http://dx.doi.org/10.1016/j.fpsl.2018.11.002.

11 Espitia, J. P., Du, W.-X., Avena-Bustillos, R. J., Soares, N. F. F., & McHugh, T. H. (2014). Edible films from pectin: physical-mechanical and antimicrobial properties - A review. Food Hydrocolloids, 35, 287-296. http://dx.doi.org/10.1016/j.foodhyd.2013.06.005.

12 Costa, A. R. M., Ito, E. N., Cavalho, L. H., & Canedo, E. L. (2019). Non-isothermal melt crystallization kinetics of poly(3-hydroxybutyrate), poly(butylene adipate-co-terephthalate) and its mixture. Polímeros: Ciência e Tecnologia, 29(1), e2019006. http://dx.doi.org/10.1590/0104-1428.11217.

13 Li, Z., Yang, J., & Loh, X. Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Materials, 8, e265. http://dx.doi.org/10.1038/am.2016.48

14 Souza, G., Santos, A., & Vinhas, G. (2016). Avaliação das propriedades da blenda de poli(3-hidroxibutirato)/quitosana após esterilização térmica ou radiolítica. Polímeros: Ciência Tecnologia, 26(4), 352-359. http://dx.doi.org/10.1590/0104-1428.2215

15 Pachekoski, W. M., Dalmolin, C., & Agnelli, J. A. M. (2014). Blendas Poliméricas Biodegradáveis de PHB e PLA para Fabricação de Filmes. Polímeros: Ciência Tecnologia, 24(4), 501-507. http://dx.doi.org/10.1590/0104-1428.1489.

16 Costa, A. R. M., Ito, E. N., Carvalho, L. H., & Canedo, E. L. (2019). Non-isothermal melt crystallization kinetics of poly(3-hydroxybutyrate), poly(butylene adipate-co-terephthalate) and its mixture. Polímeros: Ciência Tecnologia, 29(1), e2019006. http://dx.doi.org/10.1590/0104-1428.11217.

17 Fiori, A. P. S. M., Camani, P. H., Rosa, D. S., & Carastan, D. J. (2019). Combined effects of clay minerals and polyethylene glycol in the mechanical and water barrier properties of carboxymethylcellulose films. Industrial Crops and Products, 140, 11644. http://dx.doi.org/10.1016/j.indcrop.2019.111644.

18 Quental, A. C., Carvalho, F. P., Tada, E. S., & Felisberti, M. I. (2010). Blendas de PHB e seus copolímeros: miscibilidade e compatibilidade. Quimica Nova, 33(2), 438-446. http://dx.doi.org/10.1590/S0100-40422010000200035.

19 Khaneghah, A. M., Hashemi, S. M. B., & Limbo, S. (2018). Antimicrobial agents and packaging systems in antimicrobial active food packaging: an overview of approaches and interactions. Food and Bioproducts Processing, 111, 1-19. http://dx.doi.org/10.1016/j.fbp.2018.05.001.

20 Amorati, R., Foti, M. C., & Valgimigli, L. (2013). Antioxidant activity of essential oils. Journal of Agricultural and Food Chemistry, 61(46), 10835-10847. http://dx.doi.org/10.1021/jf403496k. PMid:24156356.

21 Siddique, A. B., Rahman, S. M. M., & Hossain, M. A. (2012). Chemical composition of essential oil by different extraction methods and fatty acid analysis of the leaves of Stevia Rebaudiana Bertoni. Arabian Journal of Chemistry, 9(2), 1185-1189. http://dx.doi.org/10.1016/j.arabjc.2012.01.004.

22 Scherer, R., Wagner, R., Duarte, M. C. T., & Godoy, H. T. (2009). Composição e atividades antioxidante e antimicrobiana dos óleos essenciais de cravo-da-índia, citronela e palmarosa. Revista Brasileira de Plantas Medicinais, 11(4), 442-449. http://dx.doi.org/10.1590/S1516-05722009000400013.

23 Bagheri, L., Khodaei, N., Salmieri, S., Karboune, S., & Lacroix, M. (2020). Correlation between chemical composition and antimicrobial properties of essential oils against most common food pathogens and spoilers: in-vitro efficacy and predictive modelling. Microbial Pathogenesis, 147, 104212. http://dx.doi.org/10.1016/j.micpath.2020.104212. PMid:32344178.

24 Hasheminejad, N., Khodaiyan, F., & Safari, M. (2019). Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chemistry, 275, 113-122. http://dx.doi.org/10.1016/j.foodchem.2018.09.085. PMid:30724177.

25 Chaieb, K., Hajlaoui, H., Zmantar, T., Kahla-Nakbi, A. B., Rouabhia, M., Mahdouani, K., & Bakhrouf, A. (2007). The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytotherapy Research, 21(6), 501-506. http://dx.doi.org/10.1002/ptr.2124. PMid:17380552.

26 Wang, L., Liu, F., Jiang, Y., Chai, Z., Li, P., Cheng, Y., Jing, H., & Leng, X. (2011). Synergistic antimicrobial activities of natural essential oils with chitosan films. Journal of Agricultural and Food Chemistry, 59(23), 12411-12419. http://dx.doi.org/10.1021/jf203165k. PMid:22034912.

27 Mulla, M., Ahmed, J., Al-Attar, H., Castro-Aguirre, E., Arfat,Y. A., & Auras, R. (2017). Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control, 73(Part B), 663-671. http://dx.doi.org/10.1016/j.foodcont.2016.09.018

28 Lima, M. S., Carvalho, D. S., Silva, S. H., Caetano, V. F., & Vinhas, G. M. (2017). Avaliação do efeito antimicrobiano do óleo essencial de cravo em filmes de poli (cloreto de vinila). Revista Brasileira de Agrotecnologia, 7(2), 294-298.

29 Mupalla, S. R., Kanatt, S. R., Chawla, S. P., & Sharma, A. (2014). Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Packaging and Shelf Life, 2(2), 51-58. http://dx.doi.org/10.1016/j.fpsl.2014.07.002.

30 Martelli, S. M., Sabirova, J., Fakhouri, F. M., Dyzma, A., de Meyer, B., & Soetaert, W. (2012). Obtention and characterization of poly(3-hydroxybutyricacid-co-hydroxyvaleric acid)/mcl-PHA based blends. Lebensmittel-Wissenschaft + Technologie, 47(2), 386-392. http://dx.doi.org/10.1016/j.lwt.2012.01.036.

31 Giaquinto, C. D. M., Souza, G. K. M., Caetano, V. F., & Vinhas, G. M. (2017). Evaluation of the mechanical and thermal properties of PHB/canola oil films. Polímeros: Ciência Tecnologia, 27(3), 201-207. http://dx.doi.org/10.1590/0104-1428.10716.

32 American Society for Testing and Materials – ASTM. (2012). D882-12: Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Philadelphia: ASTM.

33 Narayanan, A., Neera, Mallesha, & Ramana, K. V. (2013). Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin. Applied Biochemistry and Biotechnology, 170(6), 1379-1388. http://dx.doi.org/10.1007/s12010-013-0267-2. PMid:23666640.

34 Ostrosky, E. A., Mizumoto, M. K., Lima, M. E. L., Kaneko, T. M., Nishikawa, S. O., & Freitas, B. R. (2008). Métodos para avaliação da atividade antimicrobiana e determinação da Concentração Mínima Inibitória (CMI) de plantas medicinais. Revista Brasileira de Farmacognosia, 18(2), 301-307. http://dx.doi.org/10.1590/S0102-695X2008000200026.

35 Ahmed, J., Mulla, M., Jacob, H., Luciano, G., Bini, T. B., & Almusallam, A. (2019). Polylactide/poly(ε-caprolactone)/zinc oxide/clove essential oil composite antimicrobial films for scrambled egg packagings. Food Packaging and Shelf Life, 21, 100355. http://dx.doi.org/10.1016/j.fpsl.2019.100355.

36 Song, N., Lee, J., Mijan, M., & Song, K. B. (2014). Development of a chicken feather protein film containing clove oil and its application in smoked salmon packaging. Lebensmittel-Wissenschaft + Technologie, 57(2), 453-460. http://dx.doi.org/10.1016/j.lwt.2014.02.009.

37 Cui, H., Zhao, C., & Lin, L. (2015). The specific antibacterial activity of liposome-encapsulated Clove oil and its application in tofu. Food Control, 56(2), 128-134. http://dx.doi.org/10.1016/j.foodcont.2015.03.026.

38 Bart, J. C. J. (2006). Polymer Additive Analytics: Industrial Practice and Case Studies. Italy: Firenze University Press. http://dx.doi.org/10.36253/8884533783

39 Tawakkal, I. S. M. A., Cran, M. J., & Bigger, S. W. (2016). Release of thymol from poly(lactic acid)-based antimicrobial films containing kenaffibres as natural filler. Lebensmittel-Wissenschaft + Technologie, 66, 629-637. http://dx.doi.org/10.1016/j.lwt.2015.11.011.

40 Silva, A. O., Cortez-Veja, W. R., Prentice, C., & Fonseca, G. G. (2019). Development and characterization of biopolymer films based on bocaiuva (Acromonia aculeata) flour. International Journal of Biological Macromolecules, 155, 1157-1168. http://dx.doi.org/10.1016/j.ijbiomac.2019.11.083. PMid:31726125.

41 Andrade, M. F., Silva, I. D. L., Silva, G. A., Cavalcante, P. V. D., Silva, F. T., Almeida, Y. M. B., Vinhas, G. M., & Carvalho, L. H. (2020). A study of poly (butylene adipate-co-terephthalate)/orange essential oil films for application in active antimicrobial packaging. Lebensmittel-Wissenschaft + Technologie, 125, 1-22. http://dx.doi.org/10.1016/j.lwt.2020.109148.

42 Choi, M., Soottitantawat, A., Nuchuchua, O., Min, S., & Ruktanonchai, U. (2009). Physical and light oxidative properties of eugenol encapsulated by molecular inclusion and emulsion-diffusion method. Food Research International, 42(1), 148-156. http://dx.doi.org/10.1016/j.foodres.2008.09.011.

43 Giménez, B., Gomez-Guillén, M. C., López-Caballero, M. E., Gomezestaca, J., & Montero, P. (2012). Role of sepiolite in the release of active compounds from gelatin-egg white films. Food Hydrocolloids, 27(2), 475-486. http://dx.doi.org/10.1016/j.foodhyd.2011.09.003.

5f6def0d0e88257f0e97b914 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections