Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Isolation and characterization of micro cellulose obtained from waste mango

Miguel Angel Lorenzo-Santiago; Rodolfo Rendón-Villalobos

Downloads: 0
Views: 39


Cellulose fibers are used in polymeric matrices due to their thermal and mechanical capabilities. These biopolymers can be isolated from different natural sources. In this study, micro cellulose was obtained from mango fibrous endocarp (Mangifera caesia Jack ex Wall) waste. Isolation was performed using sulfuric acid and sodium hydroxide as removal agents of lignin and hemicellulose. A comparative analysis between native fiber (NF) and micro cellulose (MC) was performed, using FTIR, DSC and SEM techniques to assess their composition, thermal, structural and crystallinity capacities. The structures of the fibers were not damaged due to the chemical treatments received and their sizes ranged between 40 and 400 μm in length. The extraction of cellulose from mango waste represents an important start in obtaining biopolymers that can be used in the food, pharmaceutical, and other industries.


biopolymers, mango waste, micro cellulose


1 Derraik, J. G. (2002). The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin, 44(9), 842-852. http://dx.doi.org/10.1016/S0025-326X(02)00220-5. PMid:12405208.

2 O’Brine, T., & Thompson, R. C. (2010). Degradation of plastic carrier bags in the marine environment. Marine Pollution Bulletin, 60(1), 2279-2283. https://doi.org/10.1016/j.marpolbul.2010.08.005.

3 Webb, H. K., Arnott, J., Crawford, R. J., & Ivanova, E. P. (2012). Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers, 5(1), 1-18. https://doi.org/10.3390/polym5010001.

4 Das, O., Sarmah, A. K., & Bhattacharyya, D. (2015). A sustainable and resilient approach through biochar addition in wood polymer composites. The Science of the Total Environment, 512-513, 326-336. http://dx.doi.org/10.1016/j.scitotenv.2015.01.063. PMid:25634737.

5 Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782.

6 Ojeda, T. F., Dalmolin, E., Forte, M. M., Jacques, R. J., Bento, F. M. & Camargo, F. A. (2009). Abiotic and biotic degradation of oxo-biodegradable polyethylenes. Polymer degradation and stability, 94(6), 965-970. https://doi.org/10.1016/j.polymdegradstab.2009.03.011.

7 Wiles, D. M., & Scott, G. (2006). Polyolefins with controlled environmental degradability. Polymer degradation and stability, 91(7), 1581-1592. https://doi.org/10.1016/j.polymdegradstab.2005.09.010.

8 Kyrikou, I., & Briassoulis, D. (2007). Biodegradation of agricultural plastic films: a critical review. Journal of Polymers and the Environment, 15(2), 125-150. https://doi.org/10.1007/s10924-007-0053-8.

9 Ammala, A., Bateman, S., Dean, K., Petinakis, E., Sangwan, P., Wong, S., & Leong, K. H. (2011). An overview of degradable and biodegradable polyolefins. Progress in Polymer Science, 36(8), 1015-1049. https://doi.org/10.1016/j.progpolymsci.2010.12.002.

10 Flieger, M., Kantorova, M., Prell, A., Řezanka, T., & Votruba, J. (2003). Biodegradable plastics from renewable sources. Folia Microbiologica, 48(1), 27-44. http://dx.doi.org/10.1007/BF02931273. PMid:12744074.

11 Sagnelli, D., Hooshmand, K., Kemmer, G. C., Kirkensgaard, J. J. K., Mortensen, K., Giosafatto, C. V. L., Holse, M., Hebelstrup, K. H., Bao, J., Stelte, W., Bjerre, A. B., & Blennow, A. (2017). Cross-linked amylose bio-plastic: a transgenic-based compostable plastic alternative. International Journal of Molecular Sciences, 18(10), 2075-2086. http://dx.doi.org/10.3390/ijms18102075. PMid:28973963.

12 Bastioli, C. (2001). Global status of the production of biobased packaging materials. Starch, 53(8), 351-355. https://doi.org/10.1002/1521-379X(200108)53:8<351::AID-STAR351>3.0.CO;2-R.

13 Burgos, N., Valdés, A., & Jiménez, A. (2016). Valorization of agricultural wastes for the production of protein-based biopolymers. Journal of Renewable Materials, 4(3), 165-177. http://dx.doi.org/10.7569/JRM.2016.634108.

14 Vestena, M., Gross, I. P., Muller, C. M. O., & Pires, A. T. N. (2016). Isolation of whiskers from natural sources and their dispersed in a non-aqueous medium. Polímeros: Ciência e Tecnologia, 26(4), 327-335. http://dx.doi.org/10.1590/0104-1428.2367.

15 Serna-Cock, L., García-Gonzales, E., & Torres-León, C. (2016). Agro-industrial potential of the mango peel based on its nutritional and functional properties. Food Reviews International, 32(4), 364-376. http://dx.doi.org/10.1080/87559129.2015.1094815.

16 Torres-León, C., Rojas, R., Serna-Cock, L., Belmares-Cerda, R., & Aguilar, C. N. (2017). Extraction of antioxidants from mango seed kernel: optimization assisted by microwave. Food and Bioproducts Processing, 105, 188-196. http://dx.doi.org/10.1016/j.fbp.2017.07.005.

17 Cordeiro, E. M. S., Nunes, Y. L., Mattos, A. L. A., Rosa, M. F., de sá M. Sousa, M., Fo., & Ito, E. N. (2014). Polymer biocomposites and nanobiocomposites obtained from mango seeds. Macromolecular Symposia, 344(1), 39-54. Macromolecular Symposia, 344(1), 39-54. http://dx.doi.org/10.1002/masy.201300217.

18 Giraldo, L. M., Correa, H. M., Gutiérrez, J. B., & Castano, C. (2007). Aprovechamiento del residuo agroindustrial del mango común (Mangifera indica L.) en la obtención de azúcares fermentables. Ingeniería y Ciencia-ing, 3(6), 41-62.

19 Lorenzo‐Santiago, M. A., Juárez-López, A. L., Rosas‐Acevedo, J. L., Rendón‐Villalobos, J. R., Toribio‐Jiménez, J., & García Hernández, E. (2018). Management and final disposal of mango waste in the State of Guerrero, Mexico: a brief review. The Journal of Agricultural Science, 10(12), 34-41. http://dx.doi.org/10.5539/jas.v10n12p34.

20 Béguin, P., & Aubert, J.-P. (1994). The biological degradation of cellulose. FEMS Microbiology Reviews, 13(1), 25-58. http://dx.doi.org/10.1111/j.1574-6976.1994.tb00033.x. PMid:8117466.

21 Azizi Samir, M. A. S., Alloin, F., & Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2), 612-26. http://dx.doi.org/10.1021/bm0493685. PMid:15762621.

22 Wegner, T. H., & Jones, P. E. (2006). Advancing cellulose-based nanotechnology. Cellulose (London, England), 13(2), 115-118. http://dx.doi.org/10.1007/s10570-006-9056-1.

23 Beck-Candanedo, S., Roman, M., & Gray, D. G. (2005). Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules, 6(2), 1048-1054. http://dx.doi.org/10.1021/bm049300p. PMid:15762677.

24 Cerqueira, J. C., Penha, J. D. S., Oliveira, R. S., Guarieiro, L. L. N., Melo, P. D. S., Viana, J. D., & Machado, B. A. S. (2017). Production of biodegradable starch nanocomposites using cellulose nanocrystals extracted from coconut fibers. Polímeros: Ciência e Tecnologia, 27(4), 320-329. http://dx.doi.org/10.1590/0104-1428.05316.

25 Khenblouche, A., Bechki, D., Gouamid, M., Charradi, K., Segni, L., Hadjadj, M., & Boughali, S. (2019). Extraction and characterization of cellulose microfibers from Retama raetam stems. Polímeros: Ciência e Tecnologia, 29(1), e2019011. http://dx.doi.org/10.1590/0104-1428.05218.

26 Salgado-Delgado, R., Coria-Cortés, L., García-Hernández, E., Galarza, Z. V., Rubio-Rosas, E., & Crispín-Espino, I. (2010). Elaboración de materiales reforzados con carácter biodegradable a partir de polietileno de baja densidad y bagazo de caña modificado. Revista Iberoamericana de Polímeros, 11(7), 520-531. Retrieved in 2019, October 28, from https://dialnet.unirioja.es/servlet/articulo?codigo=3694228

27 Cordeiro, E. M. S., Nunes, Y. L., Mattos, A. L., & Rosa, M. F., Souza, M. S. M., Fo., & Ito, E. N. (2014). Polymer biocomposites and nanobiocomposites obtained from mango seeds. Macromolecular Symposia, 344(1), 39-54. https://doi.org/10.1002/masy.201300217.

28 Orts, W. J., Shey, J., Imam, S. H., Glenn, G. M., Guttman, M. E., & Revol, J. F. (2005). Application of cellulose microfibrils in polymer nanocomposites. Journal of Polymers and the Environment, 13(4), 301-306. http://dx.doi.org/10.1007/s10924-005-5514-3.

29 Szymańska-Chargot, M., Cieśla, J., Chylińska, M., Gdula, K., Pieczywek, P. M., Koziol, A., Cieślak, K. J., & Zdunek, A. (2018). Effect of ultrasonication on physicochemical properties of apple based nanocellulose-calcium carbonate composites. Cellulose (London, England), 25(8), 4603-4621. http://dx.doi.org/10.1007/s10570-018-1900-6.

30 Kasuga, T., Isobe, N., Yagyu, H., Koga, H., & Nogi, M. (2018). Clearly transparent nanopaper from highly concentrated cellulose nanofiber dispersion using dilution and sonication. Nanomaterials (Basel, Switzerland), 8(2), 104. http://dx.doi.org/10.3390/nano8020104. PMid:29439544.

31 Technical Association of the Pulp and Paper Industry – TAPPI. (2007). Acid insoluble lignin in wood and pulp. T 222 om-02. Fibrous materials and pulp testing. Atlanta: TAPPI.

32 Technical Association of the Pulp and Paper Industry – TAPPI. (2007). Solvent extractives of wood and pulp. T 204 cm-97. Fibrous materials and pulp testing. Atlanta: TAPPI.

33 Haykiri-Acma, H., Yaman, S., Alkan, M., & Kucukbayrak, S. (2014). Mineralogical characterization of chemically isolated ingredients from biomass. Energy Conversion and Management, 77, 221-226. http://dx.doi.org/10.1016/j.enconman.2013.09.024.

34 Waliszewska, B., Mleczek, M., Zborowska, M., Goliński, P., Rutkowski, P., & Szentner, K. (2019). Changes in the chemical composition and the structure of cellulose and lignin in elm wood exposed to various forms of arsenic. Cellulose (London, England), 26(10), 6303-6315. http://dx.doi.org/10.1007/s10570-019-02511-z.

35 Rendón-Villalobos, R., García-Hernández, E., Güizado-Rodríguez, M., Salgado Delgado, R., & Rangel-Vázquez, N. A. (2010). Obtención y caracterización de almidón de plátano (Musa paradisiaca L.) acetilado a diferentes grados de sustitución. Afinidad, 67(548), 294-300. Retrieved in 2019, October 28, from https://www.raco.cat/index.php/afinidad /article/view/269205/356773

36 Xu, Y. X., Miladinov, V., & Hanna, M. A. (2004). Synthesis and characterization of starch acetates with high substitution. Cereal Chemistry, 81(6), 735-740. http://dx.doi.org/10.1094/CCHEM.2004.81.6.735.

37 Poley, L. H., Siqueira, A. P. L., Silva, M. G., Vargas, H., & Sanchez, R. (2004). Photothermal characterization of low density polyethylene food packages. Polímeros: Ciência e Tecnologia, 14(1), 8-12. http://dx.doi.org/10.1590/S0104-14282004000100007.

38 Guzmán, O., Lemus, C., Martínez, S., Bonilla, J., Plasencia, A., & Ly, J. (2012). Chemical characteristics of silages of mango (Mangifera indica L.) by-products for animal feeding. Canadian Journal of Agricultural Science, 46(4), 369-374.

39 de Carvalho Couto, C. C., Fo., da Silva, J. C., Fo., Prata Neiva, A., Jr.,Magalhães de Souza, R., Rodrigues Nunes, J. A., & Viana Coelho, J. (2010). Fibrous fractions of mango residue silage with additives. Ciência e Agrotecnologia, 34(3), 751-757. http://dx.doi.org/10.1590/S1413-70542010000300031.

40 Serna Cock, L., & Torres León, C. (2014). Potencial agroindustrial de cáscaras de mango de las variedades Keitt, y Tommy Atkins (Mangifera indica). Acta Agronomica, 64(2), 110-115. http://dx.doi.org/10.15446/acag.v64n2.43579.

41 Balza, M., Garrido, E., García, M., Martínez, J., & García, A. (2017). Chemical characterization of the cellular wall of mango bocado pulp. Revista Agrollanía, 14, 7-13.

42 Owi, W. T., Lin, O. H., Sam, S. T., Chia, C. H., Zakaria, S., Mohaiyiddin, M. S., Villagracia, A. R., Santos, G. N., & Md Akil, H. (2016). Comparative study of microcelluloses isolated from two different biomasses with commercial cellulose. BioResources, 11(2), 3453-3465. http://dx.doi.org/10.15376/biores.11.2.3453-3465.

43 Nagalakshmaiah, M., El Kissi, N., Mortha, G., & Dufresne, A. (2016). Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex. Carbohydrate Polymers, 136, 945-954. http://dx.doi.org/10.1016/j.carbpol.2015.09.096. PMid:26572433.

44 Atiqah, M. S. N., Gopakumar, D. A., F A T, O., Pottathara, Y. B., Rizal, S., Aprilia, N. A. S., Hermawan, D., Paridah, M. T. T., Thomas, S., & H P S, A. K. (2019). Extraction of cellulose nanofibers via eco-friendly supercritical carbon dioxide treatment followed by mild acid hydrolysis and the fabrication of cellulose nanopapers. Polymers, 11(11), 1813. PMid:31694184.

45 Sun, J. X., Xu, F., Sun, X. F., Xiao, B., & Sun, R. C. (2005). Physico-chemical and thermal characterization of cellulose from barley straw. Polymer Degradation & Stability, 88(3), 521-531. http://dx.doi.org/10.1016/j.polymdegradstab.2004.12.013.

46 Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788. http://dx.doi.org/10.1016/j.fuel.2006.12.013.

47 Naranjo, D. C., Alamilla-Beltran, L., Gutierrez-Lopez, G. F., Terres-Rojas, E., Solorza-Feria, J., Romero-Vargas, S., Yee-Madeira, H., Flores-Morales, A., & Mora-Escobedo, R. (2016). Isolation and characterization of cellulose obtained from Agave salmiana fibers using two acid-alkali extraction methods. Revista Mexicana de Ciencias Agrícolas, 7(1), 31-43. http://dx.doi.org/10.29312/remexca.v7i1.368.

48 Sgriccia, N., Hawley, M. C., & Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composites. Part A, Applied Science and Manufacturing, 39(10), 1632-1637. http://dx.doi.org/10.1016/j.compositesa.2008.07.007.

49 Heredia-Guerrero, J. A., Benítez, J. J., Domínguez, E., Bayer, I. S., Cingolani, R., Athanassiou, A., & Heredia, A. (2014). Infrared and Raman spectroscopic features of plant cuticles: a review. Frontiers in Plant Science, 5, 305. http://dx.doi.org/10.3389/fpls.2014.00305. PMid:25009549.

50 Stevulova, N., Estokova, A., Cigasova, J., Schwarzova, I., Kacik, F., & Geffert, A. (2017). Thermal degradation of natural and treated hemp hurds under air and nitrogen atmosphere. Journal of Thermal Analysis and Calorimetry, 128(3), 1649-1660. http://dx.doi.org/10.1007/s10973-016-6044-z.

51 Espinosa-Andrews, H., & Urias-Silvas, J. E. (2012). Thermal properties of agave fructans (Agave tequilana Weber var. Azul). Carbohydrate Polymers, 87(4), 2671-2676. http://dx.doi.org/10.1016/j.carbpol.2011.11.053.

52 Miyahara, R. Y., Melquiades, F. L., Ligowski, E., Santos, A., Fávaro, S. L., & Antunes, O. R., Jr. (2018). Preparation and characterization of composites from plastic waste and sugar cane fiber. Polímeros: Ciência e Tecnologia, 28(2), 147-154. http://dx.doi.org/10.1590/0104-1428.12216.

53 Xiao, B., Sun, X., & Sun, R. (2001). Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation & Stability, 74(2), 307-319. http://dx.doi.org/10.1016/S0141-3910(01)00163-X.

54 Wunderlich, B. (1990). Thermal analysis. New York: Academic Press. http://dx.doi.org/10.1016/B978-0-12-765605-2.50006-6.

55 Li, Q., Zhou, J., & Zhang, L. (2009). Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. Journal of Polymer Science. Part B, Polymer Physics, 47(11), 1069-1077. http://dx.doi.org/10.1002/polb.21711.

56 Spagnol, C., Rodrigues, F. H. A., Pereira, A. G. B., Fajardo, A. R., Rubira, A. F., & Muniz, E. C. (2012). Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan–graft–poly (acrylic acid). Carbohydrate Polymers, 87(3), 2038-2045. http://dx.doi.org/10.1016/j.carbpol.2011.10.017.

57 Bolio-López, G. I., Valadez-González, A., Veleva, L., & Andreeva, A. (2011). Cellulose whiskers from agro–industrial banana wastes: isolation and characterization. Revista Mexicana de Ingeniería Química, 10(2), 291-299.

58 Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358-3393. http://dx.doi.org/10.1002/anie.200460587. PMid:15861454.

6037b70ca95395528444f3e4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections