Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Bionanocomposites of PLA/PBAT/organophilic clay: preparation and characterization

Barbosa, Josiane Dantas Viana; Azevedo, Joyce Batista; Araújo, Edcleide Maria; Machado, Bruna Aparecida Souza; Hodel, Katharine Valéria Saraiva; Mélo, Tomas Jefferson Alves de

Downloads: 0
Views: 41


The objective of this study was to develop bionanocomposites from blends of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and from 3% and 6% bentonite clay. Initially, the bentonite clay was treated with Praepagen salt, and the properties of the modified clay were evaluated. After the organophilization of the clay was completed, 50:50 blends of PLA/PBAT were prepared, and 3 and 6% clay was added. To test the dispersion of the system, the blending sequence was performed using eight different sequences for the addition of clay to the PLA/PBAT matrices. The mixtures were prepared in a twin screw extruder, and the specimens were subsequently injection molded. The investigated mechanical and morphological properties included the yield strength, yield strain, tensile and bending elastic modulus, and scanning and transmission electron microscopy analyses. The results of this study showed increases of the mechanical properties when nanoparticles were added and the formation of bionanocomposites with intercalated structures.


bionanocomposite; nanoclay; PBAT; PLA; bionanocomposites.


1 Silva, J. B. A., Nascimento, T., Costa, L. A. S., Pereira, F. V., Machado, B. A. S., Gomes, G. V. P., Assis, D. J., & Druzian, J. I. (2015). Effect of source and interaction with nanocellulose cassava starch, glycerol and the properties of films bionanocomposites. Materials Today2(1), 200-207. 

2 Reis, L. C. B., Souza, C. O., Silva, J. B. A., Martins, A. C., Nunes, I. L., & Druzian, J. I. (2015). Active biocomposites of cassava starch: the effect of yerba mate extract and mango pulp as antioxidant additives on the properties and the stability of a packaged product. Food and Bioproducts Processing94, 382-391. http://dx.doi.org/10.1016/j.fbp.2014.05.004

3 Lin, X., Fan, X., Li, R., Li, Z., Ren, T., Ren, X., & Huang, T. S. (2018). Preparation and characterization of PHB/PBAT–based biodegradable antibacterial hydrophobic nanofibrous membranes. Polymers for Advanced Technologies29(1), 481-489. http://dx.doi.org/10.1002/pat.4137

4 Brockhaus, S., Petersen, M., & Kersten, W. (2016). A crossroads for bioplastics: exploring product developers’ challenges to move beyond petroleum-based plastics. Journal of Cleaner Production127, 84-95. http://dx.doi.org/10.1016/j.jclepro.2016.04.003

5 Emadian, S. M., Onay, T. T., & Demirel, B. (2017). Biodegradation of bioplastics in natural environments. Waste Management (New York, N.Y.)59, 526-536. http://dx.doi.org/10.1016/j.wasman.2016.10.006. PMid:27742230. [ Links ]12). Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Critical Reviews in Food Science and Nutrition52(5), 426-442. http://dx.doi.org/10.1080/10408398.2010.500508. PMid:22369261. 

7 Brito, G. F., Agrawal, P., Araújo, E. M., & Mélo, T. J. A. (2012). Polylactide/biopolyethylene bioblends. Polímeros: Ciência e Tecnologia22(5), 427-429. http://dx.doi.org/10.1590/S0104-14282012005000072

8 Machado, B. A. S., Reis, J. H. O., Silva, J. B., Cruz, L. S., Nunes, I. L., Vargas, F. P., & Druzian, J. I. (2014). Obtenção de nanocelulose da fibra de coco verde e incorporação em filmes biodegradáveis de amido plastificados com glicerol. Quimica Nova37, 1-8. 

9 Machado, B. A. S., Silva, J. B., & Druzian, J. I. (2010). Patent No 011100001122. Rio de Janeiro: Instituto Nacional da Propriedade Industrial – INPI. 

10 Seligra, P. G., Jaramillo, C. M., Famá, L., & Goyanes, S. (2016). Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent. Carbohydrate Polymers138(1), 66-74. http://dx.doi.org/10.1016/j.carbpol.2015.11.041. PMid:26794739. 

11 Venkatesan, R., & Rajeswari, N. (2016). ZnO/PBAT nanocomposite films: investigation on the mechanical and biological activity for food packaging. Polymers for Advanced Technologies28(1), 20-27. http://dx.doi.org/10.1002/pat.3847

12 Arrieta, M. P., Samper, M. D., Aldas, M., & López, J. (2017). On the use of PLA-PHB blends for sustainable food packaging applications. Materials (Basel)10(9), 1-26. http://dx.doi.org/10.3390/ma10091008

13 Perazzo, K. K. N. C. L., Conceição, A. C. V., Santos, J. C. P., Assis, D. J., Souza, C. O., & Druzian, J. I. (2014). Properties and antioxidant action of actives cassava starch films incorporated with green tea and palm oil extracts. PLoS One9(9), e105199. http://dx.doi.org/10.1371/journal.pone.0105199. PMid:25251437. 

14 Machado, B. A. S., Nunes, I. L., Pereira, F. V., & Druzian, J. I. (2012). Desenvolvimento e avaliação da eficácia de filmes biodegradáveis de amido de mandioca com nanocelulose como reforço e com extrato de erva-mate como aditivo antioxidante. Ciência Rural42(11), 2085-2091. http://dx.doi.org/10.1590/S0103-84782012001100028

15 Correa, J. P., Molina, V., Sanchez, M., Kainz, C., Eisenberg, P., & Massani, M. B. (2017). Improving ham shelf life with a polyhydroxybutyrate/polycaprolactone biodegradable film activated with nisin. Food Packaging and Shelf Life11, 31-39. http://dx.doi.org/10.1016/j.fpsl.2016.11.004

16 Shankar, S., & Rhim, J. W. (2016). Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydrate Polymers135, 18-26. http://dx.doi.org/10.1016/j.carbpol.2015.08.082. PMid:26453846. 

17 Stanzione, M., Gargiulo, N., Caputo, D., Liguori, B., Cerruti, P., Amendola, E., Lavorgna, M., & Buonocore, G. G. (2017). Peculiarities of vanillin release from amino-functionalized mesoporous silica embedded into biodegradable composites. European Polymer Journal89, 88-100. http://dx.doi.org/10.1016/j.eurpolymj.2017.01.040

18 Varaprasad, K., Pariguana, M., Raghavendra, G. M., Jayaramudu, T., & Sadiku, E. R. (2017). Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid. Materials Science and Engineering C70(Pt 1), 85-93. http://dx.doi.org/10.1016/j.msec.2016.08.053. PMid:27770963. 

19 Marvdashti, L. M., Koocheki, A., & Yavarmanesh, M. (2017). Alyssum homolocarpum seed gum-polyvinyl alcohol biodegradable composite film: Physicochemical, mechanical, thermal and barrier properties. Carbohydrate Polymers155, 280-293. http://dx.doi.org/10.1016/j.carbpol.2016.07.123. PMid:27702514. 

20 Altomare, L., Bonetti, L., Campiglio, C. E., De Nardo, L., Draghi, L., Tana, F., & Farè, S. (2018). Biopolymer-based strategies in the design of smart medical devices and artificial organs. The International Journal of Artificial Organs41(6), 337-359. http://dx.doi.org/10.1177/0391398818765323. PMid:29614899. 

21 Smith, R. (2005). Biodegradable polymers for industrial applications. Boca Raton: Woodhead Publishing Limited and CRC Press LLC. 

22 Touchaleaume, F., Martin-Closas, L., Angellier-Coussy, H., Chevillard, A., Cesar, G., Gontard, N., & Gastaldi, E. (2016). Perrformance and environmental impact of biodegradable polymers as agricultural mulching films. Chemosphere144, 433-439. http://dx.doi.org/10.1016/j.chemosphere.2015.09.006. PMid:26386433. 

23 Basko, M., Bednarek, M., Vlaminck, L., Kubisa, P., & Du Prez, F. E. (2017). Bioodegradable polymer networks via triazolinedione-crosslinking of oleyl-functionalized poly(ε-caprolactone). European Polymer Journal89, 230-240. http://dx.doi.org/10.1016/j.eurpolymj.2017.02.031

24 Shahbazi, M., Rajabzadeh, G., Rafe, A., Ettelaie, R., & Ahmadi, S. J. (2016). The physico-mechanical and structural characteristics of blend film of poly (vinyl alcohol) with biodegradable polymers as affected by disorder-to-order conformational transition. Food Hydrocolloids60, 393-404. http://dx.doi.org/10.1016/j.foodhyd.2016.03.038

25 Pivsa-Art, W., Chaiyasat, A., Pivsa-Art, S., Yamane, H., & Ohara, H. (2013). Preparation of polymer blends between poly(lactic acid) and poly(butylene adipate-co-terephthalate) and biodegradable polymers as compatibilizers. Energy Procedia34, 549-554. http://dx.doi.org/10.1016/j.egypro.2013.06.784

26 Garavand, F., Rouhi, M., Razavi, S. H., Cacciotti, I., & Mohammadi, R. (2017). Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: a review. International Journal of Biological Macromolecules104(Pt A), 687-707. http://dx.doi.org/10.1016/j.ijbiomac.2017.06.093. PMid:28652152. 

27 Doppalapudi, S., Jain, A., Khan, W., & Domb, A. J. (2014). Biodegradable polymers-an overview. Polymers for Advanced Technologies25(5), 427-435. http://dx.doi.org/10.1002/pat.3305

28 Dhandapani, S., Nayak, S. K., & Mohanty, S. (2016). Analysis and evaluation of biobased polyester of PTT/PBAT blend: thermal, dynamic mechanical, interfacial bonding, and morphological properties. Polymers for Advanced Technologies27(7), 938-945. http://dx.doi.org/10.1002/pat.3752

29 Wei, L., & McDonald, A. G. (2016). A review on grafting of biofibers for biocomposites. Materials (Basel)9(4), 1-23. http://dx.doi.org/10.3390/ma9040303. PMid:28773429. 

30 Weng, Y. X., Jin, Y. J., Meng, Q. Y., Wang, L., Zhang, M., & Wang, Y. Z. (2013). Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polymer Testing32(5), 918-926. http://dx.doi.org/10.1016/j.polymertesting.2013.05.001

31 Karamanlioglu, M., Preziosi, R., & Robson, G. D. (2017). Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): a review. Polymer Degradation & Stability137, 122-130. http://dx.doi.org/10.1016/j.polymdegradstab.2017.01.009

32 Finzi-Quintão, C. M., Novack, K. M., Bernardes-Silva, A. C., Silva, T. D., Moreira, L. E. S., & Braga, L. E. M. (2018). Influence of Moringa oleifera derivates in blends of PBAT/PLA with LDPE. Polímeros: Ciência e Tecnologia28(4), 309-318. http://dx.doi.org/10.1590/0104-1428.05717

33 Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: nanocomposites. Polymer49(15), 3187-3204. http://dx.doi.org/10.1016/j.polymer.2008.04.017

34 Nofar, M., Heuzey, M. C., Carreau, P. J., & Kamal, M. R. (2016). Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow. Polymer98, 353-364. http://dx.doi.org/10.1016/j.polymer.2016.06.044.

35 Wu, N., & Zhang, H. (2017). Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends. Materials Letters192, 17-20. http://dx.doi.org/10.1016/j.matlet.2017.01.063.

36 Ojijo, V., & Ray, S. S. (2014). Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay. Progress in Materials Science62, 1-57. http://dx.doi.org/10.1016/j.pmatsci.2014.01.001

37 Kornmann, X. (1999). Synthesis and characterisation of thermoset-clay nanocomposites (Licentiate dissertation). Luleå Tekniska Universite, Luleå. 

38 Ferreira, L. P., Moreira, A. N., Souza, F. G. Jr, & Pinto, J. C. C. S. (2014). Preparo de nanocompósitos de Poli(Succinato de Butileno) (PBS) e argila motmorilonita organofílica via polimerização in situPolímeros: Ciência e Tecnologia24(5), 604-611. http://dx.doi.org/10.1590/0104-1428.1662.

39 Zare, Y. (2016). Effects of imperfect interfacial adhesion between polymer and nanoparticles on the tensile modulus of clay/polymernanocomposites. Applied Clay Science129, 65-70. http://dx.doi.org/10.1016/j.clay.2016.05.002.

40 Zare, Y. (2017). An approach to study the roles of percolation threshold and interphase in tensile modulus of polymer/claynanocomposites. Journal of Colloid and Interface Science486, 249-254. http://dx.doi.org/10.1016/j.jcis.2016.09.080. PMid:27721073. 

41 Kumar, M., Mohanty, S., Nayak, S. K., & Rahail-Parvaiz, R. (2010). Effect of glycidyl Methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocompósitos. Bioresource Technology101(21), 8406-8415. http://dx.doi.org/10.1016/j.biortech.2010.05.075. PMid:20573502. 

42 Zhang, N., Wang, Q., Ren, J., & Wang, L. (2009). Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. Journal of Materials Science44(1), 250-256. http://dx.doi.org/10.1007/s10853-008-3049-4

43 Barbosa, R. (2009). Study of the modification of bentonite clays for application in polyethylene nanocomposites (Doctoral thesis). Universidade Federal de Campina Grande, Campina Grande. 

44 Rodrigues, A. W. B. (2009). Organophilization of bentonite clays and application in the development of nanocomposites with polypropylene matrix (Doctoral thesis). Universidade Federal de Campina Grande, Campina Grande. 

45 Signori, F., Coltelli, M. B., & Bronco, S. (2009). Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polymer Degradation & Stability94(1), 74-82. http://dx.doi.org/10.1016/j.polymdegradstab.2008.10.004

46 Jiang, L., Wolcott, M. P., & Zhang, J. (2006). Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules7(1), 199-207. http://dx.doi.org/10.1021/bm050581q. PMid:16398516. 

47 Ko, S. W., Hong, M. K., Park, B. J., Gupta, R. K., Choi, H. J., & Bhattacharya, S. N. (2009). Morphological and rheological characterization of multiwalled carbon nanotube/PLA/PBAT blend nanocomposites. Polymer Bulletin63(1), 125-134. http://dx.doi.org/10.1007/s00289-009-0072-9.

48 Coltelli, M.-B., Maggiore, I. D., Bertoldo, M., Signori, F., Bronco, S., & Ciardelli, F. (2008). Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization. Journal of Applied Polymer Science110(2), 1250-1262. http://dx.doi.org/10.1002/app.28512

49 Ebnesajjad, S. (2012). Plastic films in food packaging: materials, technology and applications. Amsterdam: Elsevier. 

50 Viana, J. D., Araújo, E. M., & Mélo, T. J. A. (2012). Evaluation of mechanical and morphological properties of bionanocomposites PLA/PBAT/organophilic clay. Revista Eletrônica de Materiais e Processos7, 20-25. 

51 Arruda, L. C., Magaton, M., Bretas, R. E. S., & Ueki, M. M. (2015). Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polymer Testing43, 27-37. http://dx.doi.org/10.1016/j.polymertesting.2015.02.005

52 Nishida, M., Ichihara, H., Watanabe, H., Fukuda, N., & Ito, H. (2015). Improvement of dynamic tensile properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) polymer alloys using a crosslinking agent and observation of fracture surfaces. International Journal of Impact Engineering79, 117-125. http://dx.doi.org/10.1016/j.ijimpeng.2014.11.010

53 Liu, D., Li, H., Zhou, G., Yuan, M., & Qin, Y. (2015). Biodegradable poly(lactic-acid)/poly(trimethylene-carbonate)/laponite composite film: development and application to the packaging of mushrooms (Agaricus bisporus). Polymers for Advanced Technologies26(12), 1600-1607. http://dx.doi.org/10.1002/pat.3587

54 Adrar, S., Habi, A., Ajji, A., & Grohens, Y. (2018). Synergistic effects in epoxy functionalized graphene and modified organo-montmorillonite PLA/PBAT blends. Applied Clay Science157, 65-75. http://dx.doi.org/10.1016/j.clay.2018.02.028

55 Nofar, M., Heuzey, M. C., Carreau, P. J., & Kamal, M. R. (2016). Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow. Polymer98, 353-364. http://dx.doi.org/10.1016/j.polymer.2016.06.044

56 Zhang, J. F., & Sun, X. (2004). Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules5(4), 1446-1451. http://dx.doi.org/10.1021/bm0400022. PMid:15244463. 

57 Freitas, A. L. P. L., Tonini, L. R. Fo., Calvão, P. S., & Souza, A. M. C. (2017). Effect of montmorillonite and chain extender on rheological, morphological and biodegradation behavior of PLA/PBAT blends. Polymer Testing62, 189-195. http://dx.doi.org/10.1016/j.polymertesting.2017.06.030

58 Xiao, H., Lu, W., & Yeh, J. T. (2009). Crystallization behavior of fully biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. Journal of Applied Polymer Science112(6), 3754-3763. http://dx.doi.org/10.1002/app.29800

5e8e200e0e8825e50d1ad516 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections