Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Synthesis of immobilized biocatalysts for wastewater decontamination

Silva, Thâmara Machado e; Borges, Leonardo Luiz; Souza, Eli Regina Barboza e; Caramori, Samantha Salomão

Downloads: 0
Views: 29


The use of biodegradable polymers arouses biotechnological interest. This use allows applications in health and environment. Here is present the characterization and a proposition for the use of cashew (Anacardium othonianum Rizz.) polysaccharide including peroxidase immobilization for wastewater bioremediation. From the cashew gum exudate, the polysaccharide was extracted by precipitation in ethanol at 4 °C. This material is able to immobilize Horseradish peroxidase by physical adsorption and via sodium periodate with 75% and 93% of efficiency, respectively. These systems have a storage and operational stability, and removed phenolic compounds above 50% in industrial effluent samples. The bioassays in the presence of Artemia salina and Allium cepa root not only revealed no toxicity to this polysaccharide, but also presented the ability to reduce the toxicity of the industrial effluent by 50%. Immobilized cashew polysaccharide complexes are potential alternatives for waste treatment and decontaminant agents for water treatment applications. The polysaccharide is a low-cost natural matrix for environmental-technological applications.


bioremediation, ecological toxicity, natural polymers, peroxidase immobilization.


1 Choong, G. Y. H., & Focattis, D. S. A. (2016). A method for the determination and correction of the effect of thermal degradation on the viscoelastic properties of degradable polymers. Polymer Degradation and Stability Journal130, 182-188. http://dx.doi.org/10.1016/j.polymdegradstab.2016.06.018.

2 Akhtar, M., & Ding, R. (2017). Covalently cross-linked proteins & polysaccharides: formation, characterization and potential applications. Current Opinion in Colloid & Interface Science28, 31-36. http://dx.doi.org/10.1016/j.cocis.2017.01.002

3 Silva, T. M., Santiago, P. O., Purcena, L. L. A., & Fernandes, K. F. (2010). Study of the cashew gum polysaccharide for the horseradish peroxidase immobilization: structural characteristics, stability and recovery. Materials Science and Engineering C30(4), 526-530. http://dx.doi.org/10.1016/j.msec.2010.01.016

4 Correa, G. C., Naves, R. V., Rocha, M. R., Chaves, L. J., & Borges, J. D. (2008). Physial determinations in fruit and seeds of Baru (Dipteryx alata Vog.), Cajuzinho (Anacardium othonianum Rizz.) and Pequi (Caryocar brasiliense Camb.) aiming genetic breeding. Bioscience Journal24(4), 42-47. Retrieved in 2019, January 30, from http://www.seer.ufu.br/index.php/biosciencejournal/article/view/6628/4356 

5 Klibanov, A. M., Alberti, B. N., Morris, E. D., & Felshin, L. M. (1980). Enzymatic removal of toxic phenols and anilines from wastewaters. Journal of Applied Biochemistry2, 414-421. Retrieved in 2019, January 30, from https://www.osti.gov/biblio/6449569 

6 Niu, J., Xu, J., Dai, Y., Xu, J., Guo, H., Sun, K., & Liu, R. (2013). Immobilization of horseradish peroxidase by electrospun fibrous membranes for adsorption and degradation of pentachlorophenol in water. Journal of Hazardous Materials, 246-247, 119-125. http://dx.doi.org/10.1016/j.jhazmat.2012.12.023. PMid:23295768. 

7 Alarcón-Payán, D. A., Koyani, R. D., & Vazquez-Duhalt, R. (2017). Chitosan-based biocatalytic nanoparticles for pollutant removal from wastewater. Enzyme and Microbial Technology100, 71-78. http://dx.doi.org/10.1016/j.enzmictec.2017.02.008. PMid:28284314. 

8 Bilal, M., Asgher, M., Iqbal, M., Hu, H., & Zhang, X. (2016). Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. International Journal of Biological Macromolecules89, 181-189. http://dx.doi.org/10.1016/j.ijbiomac.2016.04.075. PMid:27130652. 

9 Akhtar, S., & Husain, Q. (2006). Potential applications of immobilized bitter gourd (Momordica charantia) peroxidase in the removal of phenols from polluted water. Chemosphere65(7), 1228-1235. http://dx.doi.org/10.1016/j.chemosphere.2006.04.049. PMid:16764905. 

10 Karim, Z., Adnan, R., & Husain, Q. (2012). A β-cyclodextrinechitosan complex as the immobilization matrix for horseradish peroxidase and its application for the removal of azo dyes from textile effluent. International Biodeterioration & Biodegradation72, 10-17. http://dx.doi.org/10.1016/j.ibiod.2012.04.008

11 Silva, T. M., Souza, E. R. B., de Paula, J. A. M., Borges, L. L., & Caramori, S. S. (2017). Chemical characterization and biotecnological application of cashew tree polyssacharide of Brazilian Cerrado (Anacardium othonianum Rizz.), Anarcadiaceae, Fronteiras: journal SocietyTechnologyEnvironmental Sciences6(3), 230-246. http://dx.doi.org/10.21664/2238-8869.2017v6i3.p230-246

12 Pappas, A. C., Stalikas, C. D., Fiamegos, Y. C., & Karayannis, M. I. (2002). Determination of hydrogen peroxide by using a flow injection system of immobilized peroxidase and long pathlength capillary spectrophotometry. Analytica Chimica Acta455(2), 305-313. http://dx.doi.org/10.1016/S0003-2670(01)01600-2

13 Pang, J., Jian, W., Wang, L., Wu, C., Liu, Y., He, J., & Tang, X. (2012). X-ray photoelectron spectroscopy analysis on surface modification of Konjac glucomannan membrane by nitrogen plasma treatment. Carbohydrate Polymers17(1), 369-372. http://dx.doi.org/10.1016/j.carbpol.2011.12.013

14 Lomonaco, D., Maia, F. J. N., Clemente, C. S., Mota, J. P. F., Costa, A. E., & Mazzetto, S. E. (2012). Thermal studies of new biodiesel antioxidants synthesized from a natural occurring phenolic lipid. Fuel97, 552-559. http://dx.doi.org/10.1016/j.fuel.2012.01.059

15 Halpin, B. E., & Lee, C. Y. (1987). Effect of blanching on enzyme activity and quality changes in green peas. Journal of Food Science52(4), 1002-1005. http://dx.doi.org/10.1111/j.1365-2621.1987.tb14261.x

16 Akhtar, M., & Ding, R. (2017). Covalently cross-linked proteins & polysaccharides: Formation, characterisation and potential applications. Current Opinion in Colloid & Interface Science28, 31-36. http://dx.doi.org/10.1016/j.cocis.2017.01.002

17 Ramalho, R. P. R. S., Scalize, P. S., & Caramori, S. S. (2016). Peroxidase of Brazilian Cerrado grass as an alternative for agro industrial waste treatment. Ambiente & Água11(1), 50-59. http://dx.doi.org/10.4136/ambi-agua.1735

18 Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin-Phenol reagent. The Journal of Biological Chemistry193(1), 265-275. PMid:14907713. 

19 Molina-Salinas, G. M., & Said-Fernández, S. (2006). A modified microplate cytotoxicity assay with brine shrimp larvae (Artemia salina). Pharmacologyonline3, 633-638. 

20 Fiskesjö, G. (1985). The Allium test: a standard in environmental monitoring. Hereditas102(1), 99-112. http://dx.doi.org/10.1111/j.1601-5223.1985.tb00471.x. PMid:3988545. 

21 R Core Team (2018). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved in 2019, January 30, from https://www.R-project.org/ 

22 Kristiansen, K. A., Potthast, A., & Christensen, B. E. (2010). Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydrate Research345(10), 1264-1271. http://dx.doi.org/10.1016/j.carres.2010.02.011. PMid:20227684. 

23 Vold, I. M. N., & Christensen, B. E. (2005). Periodate oxidation of chitosans with different chemical compositions. Carbohydrate Research340(4), 679-684. http://dx.doi.org/10.1016/j.carres.2005.01.002. PMid:15721340. 

24 Wu, C., Peng, S., Wen, C., Wang, X., Fan, L., Deng, R., & Pang, J. (2012). Structural characterization and properties of konjac glucomannan/curdlan blend films. Carbohydrate Polymers89(2), 497-503. http://dx.doi.org/10.1016/j.carbpol.2012.03.034. PMid:24750750. 

25 Andrade, K. C. S., Carvalho, C. W. P., & Takeiti, C. Y. (2013). Cashew gum (Anacardium occidentale): evaluation of chemical and physical changes by thermoplastic extrusion. Polímeros: Ciência e Tecnologia23(5), 667-671. http://dx.doi.org/10.4322/polimeros.2013.004

26 Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies6(4), 420-428. http://dx.doi.org/10.1016/j.ifset.2005.05.003

27 Guo, J., Li, X., Mu, C., Zhang, H., Qin, P., & Li, D. (2013). Freezing ethawing effects on the properties of dialdehyde carboxymethyl cellulose crosslinked gelatin-MMT composite films. Food Hydrocolloids33(2), 273-279. http://dx.doi.org/10.1016/j.foodhyd.2013.04.004

28 Mothé, C. G., & Rao, M. A. (2000). Thermal behavior of gum arabic incomparison with cashew gum. Thermochimica Acta, 357-358, 9-13. http://dx.doi.org/10.1016/S0040-6031(00)00358-0

29 Zohuriaan, M. J., & Shokrolahi, F. (2004). Thermal studies on natural and modified gums. Polymer Testing23(5), 575-579. http://dx.doi.org/10.1016/j.polymertesting.2003.11.001

30 Varma, A. J., Kokane, S. P., Pathak, G., & Pradhan, S. D. (1997). Thermal behavior of galactomannan guar gum and its periodate oxidation products. Carbohydrate Polymers32(2), 111-114. http://dx.doi.org/10.1016/S0144-8617(96)00155-5

31 Silva, F. E. F., Batista, K. A., Di-Medeiros, M. C. B., Silva, C. N. S., Moreira, B. R., & Fernandes, K. F. (2016). A stimuli-responsive and bioactive film based on blended polyvinyl alcohol and cashew gum polysaccharide. Materials Science and Engineering C58, 927-934. http://dx.doi.org/10.1016/j.msec.2015.09.064. PMid:26478388. 

32 Gomez-Estaca, J., Comunian, T. A., Montero, P., Ferro-Furtado, R., & Favaro-Trindade, C. S. (2016). Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin–cashew gum complex. Food Hydrocolloids61, 155-162. http://dx.doi.org/10.1016/j.foodhyd.2016.05.005

33 Khodadoust, S., Kouri, N. C., Talebiyanpoor, M. S., Deris, J., & Pebdani, A. A. (2015). Design of an optically stable pH sensor based on immobilization of giemsa on triacetylcellulose membrane. Materials Science and Engineering C57, 304-308. http://dx.doi.org/10.1016/j.msec.2015.07.056. PMid:26354268. 

34 Bayramoğlu, G., & Arıca, M. Y. (2008). Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. Journal of Hazardous Materials156(1-3), 148-155. http://dx.doi.org/10.1016/j.jhazmat.2007.12.008. PMid:18207637. 

35 Xu, R., Chi, C., Li, F., & Zhang, F. (2013). Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol. Bioresource Technology149, 111-116. http://dx.doi.org/10.1016/j.biortech.2013.09.030. PMid:24096278. 

36 Zhang, Y. P., Liu, T. H., Wang, Q., Zhao, J. H., Fang, J., & Shen, W. G. (2012). Synthesis of novel poly (N,N-diethylacrylamide-co-acrylic acid) (P(DEA-co-AA)) microgels as carrier of horseradish peroxidase immobilization for pollution treatment. Macromolecular Research20(5), 484-489. http://dx.doi.org/10.1007/s13233-012-0044-z

37 Vineh, M. B., Saboury, A. A., Poostchi, A. A., Rashid, A. M., & Pariva, K. (2018). Stability and activity improvement of horseradish peroxidase by covalent immobilization on functionalized reduced graphene oxide and biodegradation of high phenol concentration. Journal of Biological Macromolecules106, 1314-1322. http://dx.doi.org/10.1016/j.ijbiomac.2017.08.133. PMid:28851646. 

38 Tatsumi, K., Wada, S., & Ichikawa, H. (1996). Removal of chlorophenols from wastewater by immobilized horseradish peroxidase. Biotechnology and Bioengineering51(1), 126-130. http://dx.doi.org/10.1002/(SICI)1097-0290(19960705)51:1<126::AID-BIT15>3.0.CO;2-O. PMid:18627096. 

39 Luz, A. C., Pretti, I. R., Dutra, J. C. V., & Batitucci, M. C. P. (2012). Evaluation of the cytotoxic and genotoxic potential of Plantago major L. in tests systems in vivo. Revista Brasileira de Plantas Medicinais14(4), 635-642. http://dx.doi.org/10.1590/S1516-05722012000400010

5eb2ec460e8825611fd76ee1 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections