Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.08917
Polímeros: Ciência e Tecnologia
Original Article

Evaluation of degradation of furanic polyamides synthesized with different solvents

Fontoura, Cláudia Moreira da; Pistor, Vinicios; Mauler, Raquel Santos

Downloads: 0
Views: 74

Abstract

Aromatic polyamides have properties of industrial relevance. However, the industrial and technological advancement has followed the trend of sustainability by seeking renewable source materials. In this work, polyamides were synthetized using 2,5-furandicarboxylic acid with p-phenylene diamine, triphenyl phosphite and two solvents (NMP and DMAc). To evaluate the influence of solvents on the reaction, a kinetic study of degradation was carried out by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and viscometric analysis. The viscosity value was in the range 70-80 mL/g. The TGA showed a higher thermal stability and activation energy for sample prepared with DMAc than the NMP. The XRD analysis showed that the PAFDMAc presents more defined crystalline forms due to its higher solvation capability. The crystalline form can be correlated with the differences of Ea, because the crystalline orientation and the number of hydrogens bonds in sample PAFNMP may be lower than the structure attributed to PAFDMAc.

Keywords

furanic polyamides; solvents; synthesis; kinetic degradation; crystallinity

References

1 Mohanty, A. K., Das, D., Panigrahi, A. K., & Misra, M. (1998). Synthesis and characterization of a novel polyamide: polycondensation of 2,5-diaminothiazole with terephthalic acid. European Polymer Journal34(12), 1889-1892. http://dx.doi.org/10.1016/S0014-3057(98)00030-5

2 Hsiao, S. H., & Yu, C. H. (1996). Syntheses and properties of aromatic polyamides derived from 4,4′-oxydibenzoic acid and aromatic diamines. Journal of Polymer Research3(4), 239-245. http://dx.doi.org/10.1007/BF01493494

3 Yen, Y. C. (1974). Polyamides other than nylons 6 and 66 (Report nº 94, part 1). Menlo Park: SRI. 

4 Boukouvalas, N. T., & Wiebeck, H. (2007). Caracterização térmica de fios de poliaramida. Polímeros: Ciência e Tecnologia17(4), 284-288. http://dx.doi.org/10.1590/S0104-14282007000400006. [ Links ]

5 Lichtenthaler, F. W., & Peters, S. (2004). Carbohydrates as green raw materials for the chemical industry. Comptes Rendus. Chimie7(2), 65-90. http://dx.doi.org/10.1016/j.crci.2004.02.002

6 Tao, F., Song, H., & Chou, L. (2012). Efficient conversion of cellulose into furans catalyzed by metal ions in ionic liquids. Journal of Molecular Catalysis A Chemical357, 11-18. http://dx.doi.org/10.1016/j.molcata.2012.01.010

7 Hu, S., Zhang, Z., Song, J., Zhou, Y., & Han, B. (2009). Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chemistry11(11), 1746-1749. http://dx.doi.org/10.1039/b914601f

8 Gopalakrishnan, P., Narayan-Sarathy, S., Ghosh, T., Mahajan, K., & Belgacem, M. N. (2014). Synthesis and characterization of bio-based furanic polyesters. Journal of Polymer Research21(1), 340. http://dx.doi.org/10.1007/s10965-013-0340-0

9 Su, Y., Brown, H. M., Huang, X., Zhou, X., Amonette, J. E., & Zhang, Z. C. (2009). Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. Applied Catalysis A, General361(1-2), 117-122. http://dx.doi.org/10.1016/j.apcata.2009.04.002

10 Finke, J., Bartmann, M., & Feinauer, R. (1990). US Patent No 4.980.451. Washington: U.S. Patent and Trademark Office. 

11 Moreau, C., Belgacem, M. N., & Gandini, A. (2004). Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Topics in Catalysis27(1-4), 11-30. http://dx.doi.org/10.1023/B:TOCA.0000013537.13540.0e.

12 Gandini, A. (2008). Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules41(24), 9491-9504. http://dx.doi.org/10.1021/ma801735u

13 Odian, G. (2004). Principles of polymerization. New Jersey: John Wiley & Sons. http://dx.doi.org/10.1002/047147875X

14 Gu, H., He, J. M., Hu, J., & Huang, Y. D. (2012). Thermal degradation kinetics of semi-aromatic polyamide containing benzoxazole unit. Journal of Thermal Analysis and Calorimetry107(3), 1251-1257. http://dx.doi.org/10.1007/s10973-011-1778-0

15 Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan38(11), 1881-1886. http://dx.doi.org/10.1246/bcsj.38.1881

16 Flynn, J. H., & Wall, L. A. (1966). A quick direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science. Part C, Polymer Letters4(5), 323-328. http://dx.doi.org/10.1002/pol.1966.110040504

17 Gandini, A., & Belgacem, M. N. (1997). Furans in polymer chemistry. Progress in Polymer Science22(6), 1203-1379. http://dx.doi.org/10.1016/S0079-6700(97)00004-X

18 Pistor, V., Ornaghi, F. G., Fiorio, R., & Zattera, A. J. (2010). Thermal characterization of oil extracted from ethylene–propylene–diene terpolymer residues (EPDM-r). Thermochimica Acta510(1-2), 93-96. http://dx.doi.org/10.1016/j.tca.2010.06.028

19 Bartmann, M. (1988). US Patent 4.720.538-0. Washington: U.S. Patent and Trademark Office. 

20 Delpech, M. C., Coutinho, F. M. B., Sousa, K. G. M., & Cruz, R. C. (2007). Estudo viscosimétrico de prepolímeros uretânicos. Polímeros: Ciência e Tecnologia17(4), 294-298. http://dx.doi.org/10.1590/S0104-14282007000400008

21 Dabrowski, F., Bourbigot, S., Delobel, R., & Le Bras, M. (2000). Kinetic modelling of the thermal degradation of polyamide-6 nanocomposite. European Polymer Journal36(2), 273-284. http://dx.doi.org/10.1016/S0014-3057(99)00079-8

22 Herrera, M., Matuschek, G., & Kettrup, A. (2001). Main products and kinetics of the thermal degradation of polyamides. Chemosphere42(5-7), 601-607. http://dx.doi.org/10.1016/S0045-6535(00)00233-2. PMid:11219685. 

23 Amintowlieh, Y., Sardashti, A., & Simon, L. C. (2012). Polyamide 6 – wheat straw composites: degradation kinetics. Polymer Composites33(6), 985-989. http://dx.doi.org/10.1002/pc.22229

24 Li, F., Huang, L., Shi, Y., Jin, X., Wu, Z., Shen, Z., Chuang, K., Lyon, R. E., Harris, F., & Cheng, S. Z. D. (1999). Thermal degradation mechanism and thermal mechanical properties of two high-performance aromatic polyimide fibers. Journal of Macromolecular Science, Part B: Physics38(1-2), 107-122. http://dx.doi.org/10.1080/00222349908248109

25 Ko, K. S., Park, C. W., Yoon, S. H., & Oh, S. M. (2001). Preparation of Kevlar-derived carbon fibers and their anodic performances in Li secondary batteries. Carbon39(11), 1619-1625. http://dx.doi.org/10.1016/S0008-6223(00)00298-0

26 Shubha, M., Parimala, H. V., & Vijayan, K. (1991). Kevlar 49 fibres: correlation between tensile strength and X-ray diffraction peak position. Journal of Materials Science Letters10(23), 1377-1378. http://dx.doi.org/10.1007/BF00735683

27 Marin, L., Perju, E., & Damaceanu, M. D. (2011). Designing thermotropic liquid crystalline polyazomethines based on fluorene and/or oxadiazole chromophores. European Polymer Journal47(6), 1284-1299. http://dx.doi.org/10.1016/j.eurpolymj.2011.03.004

28 Mehenni, H., Guillou, H., Tessier, C., & Brisson, J. (2008). Effect of chain ends on the structure of aramid oligomers. Canadian Journal of Chemistry86(1), 7-19. http://dx.doi.org/10.1139/v07-132.

29 More, A. S., Pasale, S. K., & Wadgaonkar, P. P. (2010). Synthesis and characterization of polyamides containing pendant pentadecyl chains. European Polymer Journal46(3), 557-567. http://dx.doi.org/10.1016/j.eurpolymj.2009.11.014

30 Fields, G. B., & Fields, C. G. (1991). Solvation effects in solid-phase peptide synthesis. Journal of the American Chemical Society113(11), 4202-4207. http://dx.doi.org/10.1021/ja00011a023

31 Bruice, P. Y. (2006). Química orgânica. São Paulo: Pearson Prentice Hall. 

32 Lide, D. R. (2005). CRC handbook of chemistry and physics. New York: CRC Press. 

5e8d283a0e8825f435c9ee3b polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections