Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.08820
Polímeros: Ciência e Tecnologia
Original Article

Induction of defense in apples by sulfated and deacetylated chichá gum

Carlos Pinheiro Chagas de Lima; Andréia Hansen Oster; Fábio Rossi Cavalcanti; Regina Célia Monteiro de Paula; Judith Pessoa Andrade Feitosa

Downloads: 0
Views: 554

Abstract

Elicitors activate the defense mechanism in plants to resist pathogens. Ulvans and glucuronans can act as elicitors, and their activity seems to be related to the sulfate groups, rhamnose and uronic acid monosaccharides. Chichá gum (CHG), which also contains rhamnose and uronic acid, was sulfated with chlorosulfonic acid/N,N-dimethylformamide and deacetylated with sodium hydroxide solution. The changes were confirmed by infrared spectroscopy. Carbon-13 NMR revealed that sulfation occurred in galactose and rhamnose units. The apples were sprayed with water (negative control), deacetylated chichá gum (DCHG), and sulfated chichá gum (SCHG). The activity of enzymes guaiacol peroxidase and polyphenol oxidases and the lignin content were compared with those under the action of a commercial elicitor, benzothiadiazole. DCHG, and especially SCHG, increased the activity of the two enzymes. Only fruits treated with SCHG showed a significant (p<0.05) increase in lignin content. The plant exudate can be one abundant, renewable and safe source of elicitors.

Keywords

benzothiadiazole (BTH), Sterculia striata, elicitor, polysaccharide, sulfation

References

1 Iriti, M., & Vitalini, S. (2021). Plant immunity and crop yield: a sustainable approach in agri-food systems. Vaccines, 9(2), 1-3. http://dx.doi.org/10.3390/vaccines9020121. PMid:33546315.

2 Abouraïcha, E., El Alaoui-Talibi, Z., El Boutachfaiti, R., Petit, E., Courtois, B., Courtois, J., & El Modafar, C. (2015). Induction of natural defense and protection against Penicillium expansum and Botrytis cinerea in apple fruit in response to bioelicitors isolated from green algae. Scientia Horticulturae, 181, 121-128. http://dx.doi.org/10.1016/j.scienta.2014.11.002.

3 Abouraïcha, E. F., El Alaoui-Talibi, Z., Tadlaoui-Ouafi, A., El Boutachfaiti, R., Petit, E., Douira, A., Courtois, B., Courtois, J., & El Modafar, C. (2017). Glucuronan and oligoglucuronans isolated from green algae activate natural defense responses in apple fruit and reduce postharvest blue and gray mold decay. Journal of Applied Phycology, 29(1), 471-480. http://dx.doi.org/10.1007/s10811-016-0926-0.

4 Stadnik, M. J., & Freitas, M. B. (2014). Algal polysaccharides as source of plant resistance inducers. Tropical Plant Pathology, 39(2), 111-118. http://dx.doi.org/10.1590/S1982-56762014000200001.

5 Ramkissoon, A., Ramsubhag, A., & Jayaraman, J. (2017). Phytoelicitor activity of three Caribbean seaweed species on suppression of pathogenic infections in tomato plants. Journal of Applied Phycology, 29(6), 3235-3244. http://dx.doi.org/10.1007/s10811-017-1160-0.

6 El Modafar, C., Elgadda, M., El Boutachfaiti, R., Abouraicha, E., Zehhara, N., & Petit, E. (2012). Induction of natural defence accompanied by salicylic acid dependant systemic acquired resistance in tomato seedlings in response to bioelicitors isolated from green algae. Scientia Horticulturae, 138, 55-63. http://dx.doi.org/10.1016/j.scienta.2012.02.011.

7 Brito, A. C. F., Sierakowski, M. R., Reicher, F., Feitosa, J. P. A., & Paula, R. C. M. (2005). Dynamic rheological study of Sterculia striata and karaya polysaccharides in aqueous solution. Food Hydrocolloids, 19(5), 861-867. http://dx.doi.org/10.1016/j.foodhyd.2004.10.035.

8 Brito, A. C. F., Silva, D. A., Paula, R. C. M., & Feitosa, J. P. A. (2004). Sterculia striata exudate polysaccharide: characterization, rheological properties and comparison with Sterculia urens (karaya) polysaccharide. Polymer International, 53(8), 1025-1032. http://dx.doi.org/10.1002/pi.1468.

9 Tzatzarakis, M., Kokkinakis, M., Renieri, E., Goumenou, M., Kavvalakis, M., Vakonaki, E., Chatzinikolaou, A., Stivaktakis, P., Tsakiris, I., Rizos, A., & Tsatsakis, A. (2020). Multiresidue analysis of insecticides and fungicides in apples from the Greek market. Applying an alternative approach for risk assessment. Food and Chemical Toxicology, 140, 111262. http://dx.doi.org/10.1016/j.fct.2020.111262. PMid:32198030.

10 Marolleau, B., Gaucher, M., Heintz, C., Degrave, A., Warneys, R., Orain, G., Lemarquand, A., & Brisset, M. N. (2017). When a plant resistance inducer leaves the lab for the field: integrating ASM into routine apple protection practices. Frontiers of Plant Science, 8, 1938. http://dx.doi.org/10.3389/fpls.2017.01938. PMid:29255473.

11 SYNGENTA. (2015). Material safety data sheet (MSDS) Byon®, Syngenta, 4/16/2015. Retrieved in 2020, October 5, from https://assets.greenbook.net/M114161.pdf

12 McGregor, D., Boobis, A., Binaglia, M., Botham, P., Hoffstadt, L., Hubbard, S., Petry, T., Riley, A., Schwartz, D., & Hennes, C. (2010). Guidance for the classification of carcinogens under the Globally Harmonised System of Classification and Labelling of Chemicals (GHS). Critical Reviews in Toxicology, 40(3), 245-285. http://dx.doi.org/10.3109/10408440903384717. PMid:20014893.

13 Pires, N. R., Cunha, P. L. R., Maciel, J. S., Angelim, A. L., Melo, V. M. M., Paula, R. C. M., & Feitosa, J. P. A. (2013). Sulfated chitosan as tear substitute with no antimicrobial activity. Carbohydrate Polymers, 91(1), 92-99. http://dx.doi.org/10.1016/j.carbpol.2012.08.011. PMid:23044109.

14 Dupont, A.-L. (2002). Study of the degradation of gelatin in paper upon aging using aqueous size-exclusion chromatography. Journal of Chromatography. A, 950(1-2), 113-124. http://dx.doi.org/10.1016/S0021-9673(02)00010-9. PMid:11990984.

15 Cavalcanti, F. R., Resende, M. L. V., Carvalho, C. P. S., Silveira, J. A. G., & Oliveira, J. T. A. (2007). An aqueous suspension of Crinipellis perniciosa mycelium activates tomato defence responses against Xanthomonas vesicatoria. Crop Protection (Guildford, Surrey), 27(5), 729-738. http://dx.doi.org/10.1016/j.cropro.2006.06.012.

16 Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3. PMid:942051.

17 Monties, B. (1989). Lignins. In P. M. Dey, & J. B. Harborne (Eds.), Methods in plant biochemistry (Vol. 1, pp. 113-158). New York: Academic Press. https://doi.org/10.1016/B978-0-12-461011-8.50010-X

18 Xing, R., Liu, S., Yu, H., Guo, Z., Li, Z., & Li, P. (2005). Preparation of high molecular weight and high sulfate content chitosans and their potential antioxidant activity in vitro. Carbohydrate Polymers, 61(2), 148-154. http://dx.doi.org/10.1016/j.carbpol.2005.04.007.

19 Vikhoreva, G., Bannikova, G., Stolbushkina, P., Panov, A., Drozd, N., Makarov, V., Varlamov, V., & Galbraikh, L. (2005). Preparation and anticoagulant activity of a low-molecular-weight sulfated chitosan. Carbohydrate Polymers, 62(4), 327-332. http://dx.doi.org/10.1016/j.carbpol.2005.05.022.

20 Gangapuram, B. R., Bandi, R., Dadigala, R., Kotu, G. M., & Guttena, V. (2017). Facile green synthesis of gold nanoparticles with carboxymethyl gum karaya, selective and sensitive colorimetric detection of copper (II) ions. Journal of Cluster Science, 28(5), 2873-2890. http://dx.doi.org/10.1007/s10876-017-1264-3.

21 Patra, N., Vojtová, L., & Martinová, L. (2015). Deacetylation induced changes in thermal properties of Sterculia urens gum. Journal of Thermal Analysis and Calorimetry, 122(1), 235-240. http://dx.doi.org/10.1007/s10973-015-4680-3.

22 Padil, V. V. T., Senan, C., & Černík, M. (2015). Dodecenylsuccinic anhydride derivatives of gum karaya (Sterculia urens): Preparation, characterization, and their antibacterial properties. Journal of Agricultural and Food Chemistry, 63(14), 3757-3765. http://dx.doi.org/10.1021/jf505783e. PMid:25797306.

23 Salehi, P., Dashti, Y., Tajabadi, F. M., Safidkon, F., & Rabei, R (2011). Structural and compositional characteristics of a sulfated galactan from the red alga Gracilaria psispérsica. Carbohydrate Polymers, 83(4), 1570-1574. http://dx.doi.org/10.1016/j.carbpol.2010.10.017.

24 Cakić, M., Nikolić, G., Ilić, L., & Stanković, S. (2005). Synthesis and FTIR characterization of same dextran sulphates. Chemical Industry & Chemical Engineering Quarterly, 1(2), 74-78. http://dx.doi.org/10.2298/CICEQ0502074C.

25 Postulkova, H., Chamradova, I., Pavlinak, D., Humpa, O., Jancar, J., & Vojtova, L. (2017). Study of effects and conditions on the solubility of natural polysaccharide gum karaya. Food Hydrocolloids, 67, 148-156. http://dx.doi.org/10.1016/j.foodhyd.2017.01.011.

26 Le Cerf, D. L., Irinei, F., & Muller, G. (1990). Solution properties of gum exudates from Sterculia urens (karaya Gum). Carbohydrate Polymers, 13(4), 375-386. http://dx.doi.org/10.1016/0144-8617(90)90037-S.

27 Singh, B., Sharma, V., & Pal, L. (2011). Formation of Sterculia polysaccharide networks by gamma rays induced graft copolymerization for biomedical applications. Carbohydrate Polymers, 86(3), 1371-1380. http://dx.doi.org/10.1016/j.carbpol.2011.06.041.

28 Singh, B., & Singh, B. (2017). Influence of graphene-oxide nanosheets impregnation on properties of Sterculia gum-polyacrylamide hydrogel formed by radiation induced polymerization. International Journal of Biological Macromolecules, 99, 699-712. http://dx.doi.org/10.1016/j.ijbiomac.2017.03.037. PMid:28284934.

29 Wang, J., Guo, H., Zhang, J., Wang, X., Zhao, B., Yao, J., & Wang, Y. (2010). Sulfated modification, characterization and structure–antioxidant relationships of Artemisia sphaerocephala polysaccharides. Carbohydrate Polymers, 81(4), 897-905. http://dx.doi.org/10.1016/j.carbpol.2010.04.002.

30 Yang, X. B., Gao, X. D., Han, F., & Tan, R. X. (2005). Sulfation of a polysaccharide produced by a marine filamentous fungus Phoma herbarum YS4108 alters its antioxidant properties in vitro. Biochimica et Biophysica Acta, 1725(1), 120-127. http://dx.doi.org/10.1016/j.bbagen.2005.06.013. PMid:16054758.

31 Lee, M.-H., Jeon, H. S., Kim, S. H., Chung, J. H., Roppolo, D., Lee, H.-J., Cho, H. J., Tobimatsu, Y., Ralph, J., & Park, O. K. (2019). Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. The EMBO Journal, 38(23), e101948. http://dx.doi.org/10.15252/embj.2019101948. PMid:31559647.

32 Passardi, F., Cosio, C., Penel, C., & Dunand, C. (2005). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports, 24(5), 255-265. http://dx.doi.org/10.1007/s00299-005-0972-6. PMid:15856234.

33 Lu, Y.-C., Lu, Y., & Fan, X. (2020). Structure and Characteristics of Lignin. In S. Sharma & A. Kumar. Lignin biosynthesis and transformation for industrial applications (pp. 31-32). Switzerland: Springer. http://dx.doi.org/10.1007/978-3-030-40663-9_2
 

6151c647a953953f985fa5d2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections