Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.08720
Polímeros: Ciência e Tecnologia
Short Communication

Accurate measurement of pitch-based carbon fiber electrical resistivity

Caroline Jovine Bouças Guimarães; Alcino Palermo de Aguiar; Alexandre Taschetto de Castro

Downloads: 0
Views: 94

Abstract

This study investigated the appropriate methodology required to measure single carbon fibers electrical resistivity. Two- and four-probe methods were evaluated for this measurement. Comparing results for single filaments of pitch-based and PAN-based fibers shows that the two-probe method gives acceptable results for PAN-based fibers, but much higher deviations from adjusted resistivity for pitch-based fibers (>15%). The four-probe method shows small deviations (<1%) for both precursors and is the most suitable for measurements of pitch-based carbon fibers. The four-probe method gives higher accuracy than the two-probe for all samples tested.

Keywords

carbon fiber, four-probe method, mesophase-pitch, electrical resistivity

References

1 Singer, L. S. (1977). US Patent 4,005,183. United States. from https://patents.google.com/patent/ US4005183A/en

2 Otani, S., Watanabe, S., & Araki, T. (1977). US Patent 4,016,247. United States. from https://patents.google.com/patent/US4016247A/en

3 Singer, L. S. (1978). The mesophase and high modulus carbon fibers from pitch. Carbon, 16(6), 409-415. http://dx.doi.org/10.1016/0008-6223(78)90085-4.

4 Bright, A. A., & Singer, L. S. (1979). The electronic and structural characteristics of carbon fibers from mesophase pitch. Carbon, 17(1), 59-69. http://dx.doi.org/10.1016/0008- 6223(79)90071-X.

5 Singer, L. S. (1981). Carbon fibres from mesophase pitch. Fuel, 60(9), 839-847. http://dx.doi.org/10.1016/0016-2361(81)90147-2.

6 Matsumoto, T. (1985). Mesophase pitch and its carbon fibers. Pure and Applied Chemistry, 57(11), 1553-1562. http://dx.doi.org/10.1351/pac198557111553.

7 Rogers, D. K., Jones, S. P., Fain, C. C., & Edie, D. D. (1993). Graphitization of a high-sulfur mesophase pitch-based fiber. Carbon, 31(2), 303-313. http://dx.doi.org/10.1016/0008- 6223(93)90035-9.

8 Goncharov, K., Panin, Y., Balykin, M., & Khmelnitsky, A. (2016). High thermal conductive carbon fiber radiators with controlled loop heat pipes. In 46th International Conference on Environmental Systems (pp. 10-14). Vienna, Austria: ICES Steering Committee, American Institute of Chemical Engineers - AIChE, American Society of Mechanical Engineers - ASME, ICES International Committee - INT. Retrieved in 2020, September 29, from http://hdl.handle.net/2346/67639

9 Yamada, K., Nagano, H., Kobayashi, Y., & Totani, T. (2014). Heat Storage Panel Using a Phase-change Material Encapsulated in a High-thermal conductivity CFRP for Micro Satellites. In 44th International Conference on Environmental Systems (pp. 13– 17). Tucson, Arizona: ICES Steering Committee, ICES International Committee – INT. Retrieved in 2020, September 29, from http://hdl.handle.net/2346/59577

10 Zweben, C. (1998). Advances in composite materials for thermal management in electronic packaging. Journal of the Minerals, 50(6), 47-51. http://dx.doi.org/10.1007/s11837-998- 0128-6.

11 Lee, J., Liu, Y., Liu, Y., Park, S. J., Park, M., & Kim, H. Y. (2017). Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 5(31), 7853-7861. http://dx.doi.org/10.1039/C7TC02074K.

12 Neo, C. P., & Varadan, V. K. (2004). Optimization of carbon fiber composite for microwave absorber. IEEE Transactions on Electromagnetic Compatibility, 46(1), 102-106. http://dx.doi.org/10.1109/TEMC.2004.823618.

13 Hamada, T., Nishida, T., Sajiki, Y., Matsumoto, M., & Endo, M. (1987). Structures and physical properties of carbon fibers from coal tar mesophase pitch. Journal of Materials Research, 2(6), 850-857. http://dx.doi.org/10.1557/JMR.1987.0850.

14 Barnes, A. B., Dauché, F. M., Gallego, N. C., Fain, C. C., & Thies, M. C. (1998). As- spun orientation as an indication of graphitized properties of mesophase-based carbon fiber. Carbon, 36(7-8), 855-860. http://dx.doi.org/10.1016/S0008-6223(97)00166-8.

15 Gallego, N. C., & Edie, D. D. (2001). Structure property relationships for high thermal conductivity carbon fibers. Composites. Part A, Applied Science and Manufacturing, 32(8), 1031-1038. http://dx.doi.org/10.1016/S1359-835X(00)00175-5.

16 Beauharnois, M. E., Edie, D. D., & Thies, M. C. (2001). Carbon fibers from mixtures of AR and supercritically extracted mesophases. Carbon, 39(14), 2101-2111. http://dx.doi.org/10.1016/S0008-6223(01)00045-8.

17 Yuan, G., Li, X., Xiong, X., Dong, Z., Westwood, A., Li, B., Ye, C., Ma, G., Cui, Z., Cong, Y., Zhang, J., & Li, Y. (2017). A comprehensive study on the oxidative stabilization of mesophase pitch-based tape-shaped thick fibers with oxygen. Carbon, 115, 59-76. http://dx.doi.org/10.1016/j.carbon.2016.12.040.

18 Karacan, I., & Meşeli, H. (2018). Characterization of amorphous carbon fibers produced from thermally stabilized polyamide fibers. Journal of Industrial Textiles, 47(6), 1185-1211. http://dx.doi.org/10.1177/1528083716682922.

19 Shi, K., Yang, J., Li, J., Zhang, X., Wu, W., Liu, H., Yoon, S. H., & Li, X. (2020). Effect of oxygen-introduced pitch precursor on the properties and structure evolution of isotropic pitch-based fibers during carbonization and graphitization. Fuel Processing Technology, 199, 106291. http://dx.doi.org/10.1016/j.fuproc.2019.106291.

20 Jones, S. P., Fain, C. C., & Edie, D. D. (1997). Structural development in mesophase pitch-based carbon fibers produced from naphthalene. Carbon, 35(10-11), 1533-1543. http://dx.doi.org/10.1016/S0008-6223(97)00106-1.

21 Wu, G.-P., Li, D.-H., Yang, Y., Lu, C.-X., Zhang, S.-C., Li, X.-T., Feng, Z.-H., & Li, Z. H. (2012). Carbon layer structures and thermal conductivity of graphitized carbon fibers. Journal of Materials Science, 47(6), 2882-2890. http://dx.doi.org/10.1007/s10853-011- 6118-z. PMid:25170190.

22 Qian, X., Zhi, J., Chen, L., Zhong, J., Wang, X., Zhang, Y., & Song, S. (2018). Evolution of microstructure and electrical property in the conversion of high strength carbon fiber to high modulus and ultrahigh modulus carbon fiber. Composites Part A: Applied Science and Manufacturing, 112, 111-118. http://dx.doi.org/10.1016/j.compositesa.2018.05.030.

23 Gaier, J. R. (1984). Stability of bromine intercalated graphite fibers. Boston: American Physical Society - APS.

24 Lee, W. D., Davis, G. P., & Vogel, F. L. (1985). Electrical resistivity and magneto resistance of carbon/graphite fibers intercalated with nitric acid and arsenic pentafluoride. Carbon, 23(6), 731-737. http://dx.doi.org/10.1016/0008-6223(85)90235-0.

25 Yang, H., Yoon, S. H., Korai, Y., Mochida, I., & Katou, O. (2003). Improving graphitization degree of mesophase pitch-derived carbon fiber by solid-phase annealing of spun fiber. Carbon, 41(3), 397-403. http://dx.doi.org/10.1016/S0008-6223(02)00320- 2.

26 Ryu, S. K., Kim, S. Y., Gallego, N., & Edie, D. D. (1999). Physical properties of silver-containing pitch-based activated carbon fibers. Carbon, 37(10), 1619-1625. http://dx.doi.org/10.1016/S0008-6223(99)00086-X.

27 Tzeng, S. S., & Chang, F. Y. (2001). Electrical resistivity of electroless nickel coated carbon fibers. Thin Solid Films, 388(1-2), 143-149. http://dx.doi.org/10.1016/S0040-6090(01)00809-4.

28 Tzeng, S. S., & Chang, F. Y. (2001). EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites. Materials Science and Engineering A, 302(2), 258-267. http://dx.doi.org/10.1016/S0921-5093(00)01824-4.

29 Xing-Wen, J., Xin, Z., Jun-Meng, L., & Ping, W. (2018). Conductivity and conducting stability of copper-coated carbon-fiber-reinforced cement-based composite. Materials Research Express, 5(9), 095705. http://dx.doi.org/10.1088/2053-1591/aad98b.

30 Lavin, J. G., Boyington, D. R., & Lahijani, J. (1993). The correlation of thermal conductivity with electrical resistivity in mesophase pitch-based carbon fiber. Carbon, 31(6), 1001-1002. http://dx.doi.org/10.1016/0008-6223(93)90207-Q.

31 Zhang, X., Fujiwara, S., & Fujii, M. (2000). Measurements of thermal conductivity and electrical conductivity of a single carbon fiber. International Journal of Thermophysics, 21(4), 965-980. http://dx.doi.org/10.1023/A:1006674510648.

32 Ouyang, Q., Liu, D., Jiang, X., Ma, H., Chen, Y., & He, L. (2018). Quantitative structure–property relationships of polyacrylonitrile-based graphite fibers revealed by laser confocal Raman spectroscopy. Spectroscopy Letters, 51(2), 89-95. http://dx.doi.org/10.1080/00387010.2018.1425304.

33 Wenner, F. (1915). A method of measuring earth resistivity. National Bureau of Standards, US Government Printing Office. 12, 478-496.

34 Coleman, L. B. (1975). Technique for conductivity measurements on single crystals of organic materials. The Review of Scientific Instruments, 46(8), 1125-1126. http://dx.doi.org/10.1063/ 1.1134370.

35 International Organization for Standardization – ISO. Carbon fibre — Determination of volume resistivity ISO 13931. (2013). Switzerland: ISO.

36 Owston, C. N. (1970). Electrical properties of single carbon fibres. Journal of Physics. D, Applied Physics, 3(11), 1615-1626. http://dx.doi.org/10.1088/0022-3727/3/11/309.

37 Sundaray, B., Subramanian, V., & Natarajan, T. S. (2005). Electrical Properties of Electrospun Poly(Ethylene Oxide) - Polypyrrole Composite Fibers. MRS Online Proceedings Library, 889, 308. http://dx.doi.org/10.1557/PROC-0889-W03-08.

38 Castellanos-Gomez, A. (2013). A simple method to characterize the electrical and mechanical properties of micro-fibers. European Journal of Physics, 34(6), 1547-1554. http://dx.doi.org/10.1088/0143-0807/34/6/1547.

39 Gant, P., Niu, Y., Svatek, S. A., Agraït, N., Munuera, C., García-Hernández, M., Frisenda, R., de Lara, D. P., & Castellanos-Gomez, A. (2017). Lithography-free electrical transport measurements on 2D materials by direct microprobing. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 5(43), 11252-11258. http://dx.doi.org/10.1039/C7TC01203A.

40 Niu, Y., Frisenda, R., Svatek, S. A., Orfila, G., Gallego, F., Gant, P., Agraït, N., Leon, C., Rivera-Calzada, A., De Lara, D. P., Santamaria, J., & Castellanos-Gomez, A. (2017). Photodiodes based in La0.7Sr0.3MnO3/single layer MoS2 hybrid vertical heterostructures. 2D Materials, 4(3), 034002. http://dx.doi.org/10.1088/2053-1583/aa797b

41 Yanhong, T., Weizhe, H., & Xuejun, Z. (2017). Comparison of methods for the measurement of the resitivity of carbon fibers. Journal of Beijing University of Chemical Technology, 44, 34-37.

42 Mizuno, Y., Shindo, Y., Kawakita, K., Kusashi, Y., Ohsawa, Y., Satou, H., Akama, H., & Horie, H. (2018). US Patent 2018/0,090,762. United States. from https://patents. justia.com/patent/20180090762

43 Rebouillat, S., & Lyons, M. E. G. (2011). Measuring the electrical conductivity of single fibres. International Journal of Electrochemical Science, 6(11), 5731-5740.

44 Miccoli, I., Edler, F., Pfnür, H., & Tegenkamp, C. (2015). The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. Journal of Physics Condensed Matter, 27(22), 223201. http://dx.doi.org/10.1088/0953-8984/27/22/223201. PMid:25985184.

45 Yanhong, T., Weizhe, H., & Xuejun, Z. (2017). Research on measuring method of volume resistivity of carbon fiber bundle. Journal of Beijing University of Chemical Technology, 44(1), 34-37. http://dx.doi.org/10.1016/j.compositesa.2014.10.015.

46 SOLVAY. P-25 Technical Data Sheet. (2020). Retrieved in 2020, September 29, from www.cytec.com

47 TORAY. T300 Technical Data Sheet Rev 6: Updated April 13, 2018. Retrieved in 2020, September 29, from www.toraycma.com

48 TORAY. M46J Technical Data Sheet Rev. 1: Updated April 13, 2018. Retrieved in 2020, September 29, from www.toraycma.com

49 SOLVAY. K1100 Technical Data Sheet. Retrieved in 2020, September 29, from www.cytec.com

50 Cigoy, D. (2010). Accurate low-resistance measurements start with identifying sources of error. Cleveland, Ohio: Keithley Instruments, Inc. Retrieved in 2020, September 29, from https://download.tek.com/document/LLResistWhitePaper.pdf

51 Montgomery, D. (2019). Introduction to Statistical Quality Control. Arizona, USA: John Wiley & Sons.

52 Yuan, G., Xuanke, L., Westwood, A., Dong, Z., Rand, B., Cui, Z., Cong, Y., Zhang, J., Li, Y., Zhang, Z., & Wang, J. (2014). The structure and properties of ribbon-shaped carbon fibers with high orientation. Carbon, 68, 426-439. http://dx.doi.org/10.1016/j.carbon.2013.11.019.

53 Xiang, X., & Chung, D. D. L. (2019). Colossal electric permittivity discovered in polyacrylonitrile (PAN) based carbon fiber, with comparison of PAN-based and pitch-based carbon fibers. Carbon, 145, 734-739. http://dx.doi.org/10.1016/j.carbon.2019.01.069.

54 Yamane, T., Katayama, S., Todoki, M., & Hatta, I. (1996). Thermal diffusivity measurement of single fibers by an ac calorimetric method. Journal of Applied Physics, 80, 4358-4365. http://dx.doi.org/10.1063/1.363394.

55 Fengmei, H., Jianping, L., Conghui, C., Zhenglong, Z., & Yinjie, S. (2010). Evaluation and characterization on electric resistivity of carbon fiber. Aerospace Materials & Technology, 40(2), 109-111.

56 Huson, M. G., Church, J. S., Kafi, A. A., Woodhead, A. L., Khoo, J., Kiran, M. S. R. N., Bradby, J. E., & Fox, B. L. (2014). Heterogeneity of carbon fibre. Carbon, 68, 240-249. http://dx.doi.org/10.1016/j.carbon.2013.10.084.
 

60a7a7c7a953955f5657e0e2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections