Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Thermal, dielectric and catalytic behavior of palladium doped PVC films

Shimoga, Ganesh; Shin, Eun-Jae; Kim, Sang-Youn

Downloads: 0
Views: 36


The present paper discusses the aspects of synthesizing palladium (Pd) doped (Pd+2 and Pd0) poly(vinyl chloride) (PVC) using simple solution cast technique. The Pd loading to PVC was altered from 2.5% to 10.0% and the material properties were studied using UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and Field Emission Scanning Electron Microscopy (FE-SEM). Thermal behavior of all the samples were studied using thermogravimetric analysis (TGA) and Broido’s method was employed to analyse the kinetic parameters involved in different degradation steps. All the composite films were sandwitched between disk shape gold electrodes; electrical contacts were established to study the dielectric properties. The influence of Pd loading on the dielectric properties of PVC were examined. Finally, the catalytic properties of Pd0 composites were studied using standard model reduction reaction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of aqueous sodium borohydride and reported.


dielectric; heterogeneous catalysis; palladium nanocomposites; poly(vinyl chloride); thermal analysis.


1 Sápi, Z., Butler, R., & Rhead, A. (2019). Filler materials in composite out-of-plane joints – A review. Composite Structures, 207, 787-800. http://dx.doi.org/10.1016/j.compstruct.2018.09.102

2 Xue, Y., Gao, C., Liang, L., Wang, X., & Chen, G. (2018). Nanostructure controlled construction of high-performance thermoelectric materials of polymers and their composites. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(45), 22381-22390. http://dx.doi.org/10.1039/C8TA09656B

3 Sebati, W., & Ray, S. S. (2018). Advances in nanostructured metal-encapsulated porous organic-polymer composites for catalyzed organic chemical synthesis. Catalysts, 8(11), 74. http://dx.doi.org/10.3390/catal8110492

4 Zhang, X., Chen, Y., & Hu, J. (2018). Recent advances in the development of aerospace materials. Progress in Aerospace Sciences, 97, 22-34. http://dx.doi.org/10.1016/j.paerosci.2018.01.001

5 Shintake, J., Cacucciolo, V., Floreano, D., & Shea, H. (2018). Soft robotic grippers. Advanced Materials, 30(29), e1707035. http://dx.doi.org/10.1002/adma.201707035. PMid:29736928. 

6 Li, H., Yang, P., Pageni, P., & Tang, C. B. (2017). Recent advances in metal-containing polymer hydrogels. Macromolecular Rapid Communications, 38(14), 1700109. http://dx.doi.org/10.1002/marc.201700109. PMid:28547817. 

7 Alarco, P. J., Abu-Lebdeh, Y., Abouimrane, A., & Armand, M. (2004). The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nature Materials, 3(7), 476-481. http://dx.doi.org/10.1038/nmat1158. PMid:15195084.

8 Hötzel, G., & Weppner, W. (1986). Application of fast ionic conductors in solid state galvanic cells for gas sensors. Solid State Ionics, 18-19(2), 1223-1227. http://dx.doi.org/10.1016/0167-2738(86)90338-3.

9 Kumar, R. V. (1997). Application of rare earth containing solid state ionic conductors in electrolytes. Journal of Alloys and Compounds, 250(1-2), 501-509. http://dx.doi.org/10.1016/S0925-8388(96)02643-6

10 Shen, Y., Xia, S., Yao, P., Hugh Gong, R., Liu, Q., & Deng, B. (2017). Structure regulation and properties of melt-electrospinning composite filter materials. Fibers and Polymers, 18(8), 1568-1579. http://dx.doi.org/10.1007/s12221-017-7172-1

11 Saxena, S., & Saxena, U. (2016). Development of bimetal oxide doped multifunctional polymer nanocomposite for water treatment. International Nano Letters, 6(4), 223-234. http://dx.doi.org/10.1007/s40089-016-0188-5

12 Ploss, B., & Krause, M. (2007). Doped polymers as matrix materials for ferroelectric composites. Ferroelectrics, 358(1), 77-84. http://dx.doi.org/10.1080/00150190701534155

13 Yaacob, M. M., Kamaruddin, N., Mazlan, N. A., Noramat, N. F., Alsaedi, M. A., & Aman, A. (2014). Dielectric properties of polyvinyl chloride with wollastonite filler for the application of high-voltage outdoor insulation material. Arabian Journal for Science and Engineering, 39(5), 3999-4012. http://dx.doi.org/10.1007/s13369-014-0996-8

14 Orrit-Prat, J., Mujal-Rosas, R., Rahhali, A., Marin-Genesca, M., Colom-Fajula, X., & Belana-Punseti, J. (2010). Dielectric and mechanical characterization of PVC composites with ground tire rubber. Journal of Composite Materials, 45(11), 1233-1243. http://dx.doi.org/10.1177/0021998310380289.

15 Singh, A. P., & Singh, Y. P. (2016). Dielectric behavior of CaCu3Ti4O12: poly vinyl chloride ceramic polymer composites at different temperature and frequencies. Modern Electronic Materials, 2(4), 121-126. http://dx.doi.org/10.1016/j.moem.2017.01.001

16 Li, R., Zhou, J., Liu, H., & Pei, J. (2017). Effect of polymer matrix on the structure and electric properties of piezoelectric lead zirconatetitanate/polymer composites. Materials (Basel), 10(8), 945. http://dx.doi.org/10.3390/ma10080945. PMid:28805730. 

17 Abdel-Baset, T., Elzayat, M., & Mahrous, S. (2016). Characterization and optical and dielectric properties of polyvinyl chloride/silica nanocomposites films. International Journal of Polymer Science, 11(2), 169-181. http://dx.doi.org/10.1155/2016/1707018

18 Taha, T. A., & Azab, A. A. (2019). Thermal, optical, and dielectric investigations of PVC/ La0.95Bi0.05FeO3 nanocomposites. Journal of Molecular Structure, 1178, 39-44. http://dx.doi.org/10.1016/j.molstruc.2018.10.018.

19 Taha, T. A., Ismail, Z., & Elhawary, M. M. (2018). Structural, optical and thermal characterization of PVC/SnO2 nanocomposites. Applied Physics. A, Materials Science & Processing, 124(4), 307. http://dx.doi.org/10.1007/s00339-018-1731-1

20 Taha, T. A. (2017). Optical and thermogravimetric analysis of Pb3O4/PVC nanocomposites. Journal of Materials Science Materials in Electronics, 28(16), 12108-12114. http://dx.doi.org/10.1007/s10854-017-7024-1

21 Taha, T. A., & Saleh, A. (2018). Dynamic mechanical and optical characterization of PVC/fGO polymer nanocomposites. Applied Physics. A, Materials Science & Processing, 124(9), 600. http://dx.doi.org/10.1007/s00339-018-2026-2.

22 Taha, T. A. (2018). Optical properties of PVC/Al2O3 nanocomposites films. Polymer Bulletin, 76(2), 903-918. http://dx.doi.org/10.1007/s00289-018-2417-8.

23 Taha, T. A., Hendawy, N., El-Rabaie, S., Esmat, A., & El-Mansy, M. K. (2018). Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polymer Bulletin, 1(1), 1-11. http://dx.doi.org/10.1007/s00289-018-2633-2

24 Al-Hartomy, O. A., Al-Salamy, F., Al-Ghamdi, A. A., Abdel-Fatah, M., Dishovsky, N., & El-Tantawy, F. (2011). Influence of graphite nanosheets on the structure and properties of PVC-based nanocomposites. Journal of Applied Polymer Science, 120(6), 3628-3634. http://dx.doi.org/10.1002/app.33547

25 Broza, G., Piszczek, K., Schulte, K., & Sterzynski, T. (2007). Nanocomposites of poly (vinyl chloride) with carbon nanotubes (CNT). Composites Science and Technology, 67(5), 890-894. http://dx.doi.org/10.1016/j.compscitech.2006.01.033

26 Al-Ghamdi, A. A., El-Tantawy, F., Abdel Aal, N., El-Mossalamy, E. H., & Mahmoud, W. E. (2009). Stability of new electrostatic discharge protection and electromagnetic wave shielding effectiveness from poly (vinyl chloride)/graphite/nickel nanoconducting composites. Polymer Degradation & Stability, 94(6), 980-986. http://dx.doi.org/10.1016/j.polymdegradstab.2009.02.012

27 Ebnalwaled, A. A., & Thabet, A. (2016). Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synthetic Metals, 220, 374-383. http://dx.doi.org/10.1016/j.synthmet.2016.07.006

28 Baghbamidi, S. E., Hassankhani, A., Sanchooli, E., & Sadeghzadeh, S. M. (2018). The reduction of 4‐nitrophenol and 2‐nitroaniline by palladium catalyst based on a KCC‐1/IL in aqueous solution. Applied Organometallic Chemistry, 32(4), e4251. http://dx.doi.org/10.1002/aoc.4251

29 Kästner, C., & Thünemann, A. F. (2016). Catalytic reduction of 4-Nitrophenol using silver nanoparticles with adjustable activity. Langmuir, 32(29), 7383-7391. http://dx.doi.org/10.1021/acs.langmuir.6b01477. PMid:27380382. 

30 Rambabu, D., Pradeep, C. P., Pooja, A., & Dhir, A. (2015). Self-assembled material of palladium nanoparticles and a thiacalix[4]arene Cd(II) complex as an efficient catalyst for nitro-phenol reduction. New Journal of Chemistry, 39(10), 8130-8135. http://dx.doi.org/10.1039/C5NJ01304F

31 Broido, A. (1969). A simple, sensitive graphical method of treating thermogravimetric analysis data. Journal of Polymer Science. Part A-2, Polymer Physics, 7(10), 1761-1773. http://dx.doi.org/10.1002/pol.1969.160071012

32 Van Der Ven, S., & De Wit, W. F. (1969). Thermal degradation of poly(vinyl chloride): the accelerating effect of hydrogen chloride. Die Angewandte Makromolekulare Chemie, 8(1), 143-152. http://dx.doi.org/10.1002/apmc.1969.050080110

33 Dissado, L. A., & Hill, R. M. (1984). Anomalous low-frequency dispersion. Near direct current conductivity in disordered low-dimensional materials. Journal of the Chemical Society, Faraday Transactions 2 Molecular and Chemical Physics, 80(3), 291-319. http://dx.doi.org/10.1039/f29848000291

34 Aspnes, D. E., Studna, A. A., & Kinsbron, E. (1984). Dielectric properties of heavily doped crystalline and amorphous silicon from 1.5 to 6.0 eV. Physical Review. B, 29(2), 768-779. http://dx.doi.org/10.1103/PhysRevB.29.768

35 Mei, Y., Lu, Y., Polzer, F., Ballauff, M., & Drechsler, M. (2007). Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chemistry of Materials, 19(5), 1062-1069. http://dx.doi.org/10.1021/cm062554s

36 Zhang, J., Gan, W., Fu, X., & Hao, H. (2017). A microwave assisted one-pot route synthesis of bimetallic PtPd alloy cubic nanocomposites and their catalytic reduction for 4-nitrophenol. Materials Research Express, 4(10), 105022. http://dx.doi.org/10.1088/2053-1591/aa8f70

37 Adekoya, J. A., Dare, E. O., Mesubi, M. A., Nejo, A. A., Swart, H. C., & Revaprasadu, N. (2014). Synthesis of polyol based Ag/Pd nanocomposites for applications in catalysis. Results in Physics, 4, 12-19. http://dx.doi.org/10.1016/j.rinp.2014.02.002

38 Esumi, K., Isono, R., & Yoshimura, T. (2004). Preparation of PAMAM− and PPI−Metal (Silver, Platinum, and Palladium) nanocomposites and their catalytic activities for reduction of 4-Nitrophenol. Langmuir, 20(1), 237-243. http://dx.doi.org/10.1021/la035440t. PMid:15745027. 

39 Su, B., Jia, Y., Zhang, S., Chen, X., & Oyama, M. (2014). Synthesis of palladium nanoparticles on citrate-functionalized graphene oxide with high catalytic activity for 4-Nitrophenol reduction. Chemistry Letters, 43(6), 919-921. http://dx.doi.org/10.1246/cl.140105

40 Cohen, U., Walton, K. R., & Sard, R. (1984). Development of silver‐palladium alloy plating for electrical contact applications. Journal of the Electrochemical Society, 131(11), 2489-2495. http://dx.doi.org/10.1149/1.2115330

5e8d51280e88258c32c9ee3b polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections