Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.08619
Polímeros: Ciência e Tecnologia
Original Article

Effect of nanoclay addition and chemical treatment on static and dynamic mechanical analysis of jute fibre composites

Arulmurugan, Seetharaman; Venkateshwaran, Narayanan

Downloads: 1
Views: 890

Abstract

In this article, the influence of alkali treatment and addition of montmorillonite nanoclay as filler on mechanical and visco-elastic behaviour of jute fibre polymer composite were investigated. The composites are fabricated using 5wt% of nanoclay, untreated and chemically treated jute fibre of various percentage by handlayup method. The static mechanical properties like tensile, flexural, impact and inter laminar shear strength are studied as per respective ASTM standard. The dynamic mechanical analysis was carried out to evaluate storage modulus and damping factor of the prepared composite. The composition and structure of the functional groups of modified fibres were examined by Fourier transform infrared spectroscopy. The results showed that the interaction of filler addition and NaOH+KMnO4 treatment of fibres have significantly improved the tensile, flexural and impact properties to 47.12, 201.13, 172.61MPa respectively. Dynamic mechanical analysis results revealed that the incorporation of filler increases the storage modulus and glass transition temperature. The incorporation of 5wt% clay and 25wt% jute fiber increase the glass transition temperature of the composite material from 109 to 115 °C.

Keywords

chemical treatment, glass transition temperature, mechanical properties, nanoclay, natural fibre.

References

1 Saheb, D. N., & Jog, J. P. (1999). Natural fiber polymer composites: a review. Advances in Polymer Technology18(4), 351-363. http://dx.doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X

2 Jawaid, M., & Abdul Khalil, H. P. S. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydrate Polymers86(1), 1-18. http://dx.doi.org/10.1016/j.carbpol.2011.04.043

3 Saba, N., Jawaid, M., & Asim, M. (2019). Nanocomposites with nanofibers and fillers from renewable resources. In G. Koronis & A. Silva (Eds.), Green composites for automotive applications (pp. 145-170). Cambridge: Woodhead Publishing. 

4 Saba, N., Jawaid, M., & Asim, M. (2016). Recent advances in nanoclay/natural fibers hybrid composites. In M. Jawaid, A. Qaiss & R. Bouhfid (Eds.), Nanoclay reinforced polymer composites: engineering materials (pp. 1-28). Singapore: Springer. 

5 Biswas, S., Ahsan, Q., Cenna, A., Hasan, M., & Hassan, A. (2013). Physical and mechanical properties of jute bamboo and coir natural fiber. Fibers and Polymers14(10), 1762-1767. http://dx.doi.org/10.1007/s12221-013-1762-3

6 Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science37(11), 1552-1596. http://dx.doi.org/10.1016/j.progpolymsci.2012.04.003

7 John, M. J., & Anandjiwala, R. D. (2008). Recent developments in chemical modification and characterization of natural fiber reinforced composites. Polymer Composites16(2), 101-113. http://dx.doi.org/10.1002/pc.20461

8 Zaman, H. U., Khan, M. A., Khan, R. A., Arifur Rahman, M., Das, L. R., & Al-Mamun, M. (2010). Role of potassium permanganate and urea on the improvement of the mechanical properties of jute polypropylene composites. Fibers and Polymers11(3), 455-463. http://dx.doi.org/10.1007/s12221-010-0455-4

9 Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2013). Effects of chemical treatments on hemp fibre structure. Applied Surface Science276, 13-23. http://dx.doi.org/10.1016/j.apsusc.2013.02.086

10 Venkateshwaran, N., Elayaperumal, A., & Arunsundaranayagam, D. (2013). Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Materials & Design47, 151-159. http://dx.doi.org/10.1016/j.matdes.2012.12.001

11 Chen, C., Justice, R. S., Schaefer, D. W., & Baur, J. W. (2008). Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties. Polymer49(17), 3805-3815. http://dx.doi.org/10.1016/j.polymer.2008.06.023

12 Yasmin, A., Luo, J. J., Abot, J. L., & Daniel, I. M. (2006). Mechanical and thermal behavior of clay/epoxy nanocomposites. Composites Science and Technology66(14), 2415-2422. http://dx.doi.org/10.1016/j.compscitech.2006.03.011

13 Shahroze, R. M., Ishak, M. R., Salit, M. S., Leman, Z., Asim, M., & Chandrasekar, M. (2018). Effect of organo-modified nanoclay on the mechanical properties of sugar palm fiber-reinforced polyester composites. BioResources13(4), 7430-7444. http://dx.doi.org/10.15376/biores.13.4.7430-7444

14 Asim, M., Paridah, M. T., Jawaid, M., Nasir, M., & Siakeng, R. (2019). Effects of nanoclay on tensile and flexural properties of pineapple leaf fibre reinforced phenolic composite. International Journal of Recent Technology and Engineering8(2S4), 473-476. http://dx.doi.org/10.35940/ijrte.B1092.0782S419

15 Chandradass, J., Ramesh Kumar, R., & Velmurugan, R. (2008). Effect of clay dispersion on mechanical thermal and vibration properties of glass fiber reinforced vinylester composites. Journal of Reinforced Plastics and Composites27(15), 1585-1601. http://dx.doi.org/10.1177/0731684407081368

16 Rajini, N., Jappes, J. T. W., Rajakarunakaran, S., & Jeyaraj, P. (2013). Dynamic mechanical analysis and free vibration behavior in chemical modifications of coconut sheath/nanoclay reinforced hybrid polyester composite. Journal of Composite Materials47(24), 3105-3121. http://dx.doi.org/10.1177/0021998312462618

17 Jawaid, M., & Abdul Khalil, H. P. S. (2011). Effect of layering pattern on the dynamic mechanical properties and thermal degradation of oil palm jute fibers reinforced epoxy hybrid composite. BioResources6, 2309-2322. 

18 Sohn, M. S., Kim, K. S., Hong, S. H., & Kim, J. K. (2002). Dynamic mechanical properties of particle reinforced EPDM composites. Journal of Applied Polymer Science87(10), 1595-1601. http://dx.doi.org/10.1002/app.11577

19 Ash, B. J., Schadler, L. S., & Siegel, R. W. (2002). Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Materials Letters55(1-2), 83-87. http://dx.doi.org/10.1016/S0167-577X(01)00626-7

20 Asim, M., Jawaid, M., Paridah, M. T., Saba, N., Nasir, M., & Shahroze, R. M. (2019). Dynamic and thermo-mechanical properties of hybridized kenaf/PALF reinforced phenolic composites. Polymer Composites40(10), 3814-3822. http://dx.doi.org/10.1002/pc.25240

21 Shahroze, R. M., Ishak, M. R., Salit, M. S., Leman, Z., Chandrasekar, M., Munawar, N. S. Z., & Asim, M. (2019). Sugar palm fiber/polyester nanocomposites: influence of adding nanoclay fillers on thermal, dynamic mechanical and physical properties. Journal of Vinyl and Additive Technology, 1-8. http://dx.doi.org/10.1002/vnl.21736

22 Kuzmin, K. L., Timoshkin, I. A., Gutnikov, S. I., Zhukovskaya, E. S., Lipatov, Y. V., & Lazoryak, B. I. (2016). Effect of silane / nano silica on the mechanical properties of basalt fiber reinforced epoxy composites. Composite Interfaces24(1), 13-34. http://dx.doi.org/10.1080/09276440.2016.1182408

23 Alamri, H., & Low, I. M. (2013). Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites. Composites: Part A, Applied Science and Manufacturing44, 23-31. http://dx.doi.org/10.1016/j.compositesa.2012.08.026

24 Ridzuan, M. J. M., Abdul Majid, M. S., Afendi, M., Azduwin, K., Amin, N. A. M., Zahri, J. M., & Gibson, A. G. (2016). Moisture absorption and mechanical degradation of hybrid Pennisetum purpureum/glass-epoxy composites. Composite Structures141, 110-116. http://dx.doi.org/10.1016/j.compstruct.2016.01.030

25 Yahaya, R., Sapuan, S. M., Jawaid, M., Leman, Z., & Zainudin, E. S. (2015). Measurement of ballistic impact properties of woven kenaf aramid hybrid composites. Measurement77, 335-343. http://dx.doi.org/10.1016/j.measurement.2015.09.016

26 Arulmurugan, S., & Venkateshwaran, N. (2018). The effect of fiber reinforcement on fracture toughness assessment of nanoclay filled polymer composites. Surface Review and Letters26, 1-8. http://dx.doi.org/10.1142/S0218625X19500501

27 Arulmurugan, S., & Venkateshwaran, N. (2016). Vibration analysis of nanoclay filled natural fiber composites. Polymers & Polymer Composites24(7), 507-515. http://dx.doi.org/10.1177/096739111602400709

28 Senthil Kumar, M. S., Chithirai Pon Selvan, M., Sampath, P. S., Raja, K., & Balasundaram, K. (2018). Influence of nanoclay on interlaminar shear strength and fracture toughness of glass fiber reinforced nanocomposites. IOP Conference Series. Materials Science and Engineering346(1), 012081. http://dx.doi.org/10.1088/1757-899X/346/1/012081.

29 Shinde, D. K., & Kelkar, A. D. (2014). Effect of TEOS electrospun nanofiber modified resin on interlaminar shear strength of glass fiber/epoxy composite. International Journal of Chemical. Materials Science and Engineering8(1), 54-60. http://dx.doi.org/10.5281/zenodo.1336927

30 Sinha, E., & Rout, S. K. (2008). Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute. Journal of Materials Science43(8), 2590-2601. http://dx.doi.org/10.1007/s10853-008-2478-4

31 Asim, M., Jawaid, M., Abdan, K., & Ishak, M. R. (2018). The Effect of silane treated fibre loading on mechanical properties of pineapple leaf/kenaf fibre filler phenolic composites. Journal of Polymers and the Environment26(4), 1520-1527. http://dx.doi.org/10.1007/s10924-017-1060-z

32 Gumel, S. M., & Tijjani, A. A. (2015). The effect of fiber treatment on the water absorption of piliostigma reinforced Epoxy. ChemSearch6(2), 1-7. 

33 Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. Journal of Polymers and the Environment15(1), 25-33. http://dx.doi.org/10.1007/s10924-006-0042-3

34 Dewan, M. W., Hossain, M. K., Hosur, M., & Jeelani, S. (2013). Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process. Journal of Applied Polymer Science128(6), 4110-4123. http://dx.doi.org/10.1002/app.38641

35 Jesuarockiam, N., Jawaid, M., Zainudin, E. S., Hameed Sultan, M. T., & Yahaya, R. (2019). Enhanced thermal and dynamic mechanical properties of synthetic/natural hybrid composites with graphene nanoplateletes. Polymers11(7), 1085. http://dx.doi.org/10.3390/polym11071085. PMid:31247898. 

36 Saiter, A., Devallencourt, C., Saiter, J. M., & Grenet, J. (2001). Thermodynamically strong and kinetically fragile polymeric glass exemplified by melamine formaldehyde resins. European Polymer Journal37(6), 1083-1090. http://dx.doi.org/10.1016/S0014-3057(00)00242-1.

37 Gheith, M. H., Aziz, M. A., Ghori, W., Saba, N., Asim, M., Jawaid, M., & Alothman, O. Y. (2019). Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. Journal of Materials Research and Technology8(1), 853-860. http://dx.doi.org/10.1016/j.jmrt.2018.06.013

38 Palanivel, A., Veerabathiran, A., Duruvasalu, R., Iyyanar, S., & Velumayil, R. (2017). Dynamic mechanical analysis and crystalline analysis of hemp fiber reinforced cellulose filled epoxy composite. Polímeros: Ciência e Tecnologia27(4), 309-319. http://dx.doi.org/10.1590/0104-1428.00516

5eb2f7270e8825034ad76ee0 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections