Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Influence of Nanoclay on the technical properties of Glass-Abaca hybrid Epoxy composite

Sudhagar Manickam; Thanneerpanthalpalayam Kandasamy Kannan; Benjamin Lazarus Simon; Rajasekar Rathanasamy; Sachin Sumathy Raj

Downloads: 1
Views: 238


The blending of nanoclay in polymers has potential prospects in the recent development of composite technology. In this present research work, Nanoclay was added to Glass fiber and Abaca fiber reinforced hybrid epoxy composites to enhance the wear resistance of the material. Nanoclay at weight ratios of 2%, 4%, 6%, and 8% was reinforced and the composite was fabricated into laminates using compression moulding. Nanoclay reinforced composites were tested for mechanical characteristics and wear rate in comparison to the non nanoclay reinforced hybrid composites. Water absorption character and morphology were also studied. It was observed that the 4% nanoclay reinforced composites showed the optimum results, with an increase in tensile strength, flexural strength and impact strengths of 6.6%, 19.6%, and 22.6% respectively when compared with EGA composite. Similarly the wear rate of the 4% nanoclay reinforced composite also was better than the EGA composite, showing an increase of 22.1% improved resistance.


epoxy, hybrid composite, nanoclay, mechanical characterization, wear behavior


1 Parmar, R. K., & Saladi, S. P. (2018). Study on mechanical properties of natural/syntheticfibrereinforced polymer hybrid composite: a review. International Journal of Scientific Research in Science, Engineering and Technology, 4(1), 1472-1477. Retrieved in 2020, September 15, from http://ijsrset.com/IJSRSET2184130

2 Prasad, T., Reddy, A. C. K., Reddy, S. M., & Arjun, N. (2013). Experimental investigation of mechanical behaviour of glass-epoxy composites. In Proceedings of the 3rd International Conference On Recent Advances in Material Processing Technology (pp. 1-11). Kovilpatti, India: Society for Manufacturing Engineers, National Engineering College.

3 Tyagi, S., Kumar, S., & Rakesh. (2018). Experimental and numerical analysis of tensile strength of unidirectional glass/epoxy composite laminates with different fiber percentage. International Journal of Applied Engineering Research, 13(15), 12157-12160. Retrieved in 2020, September 15, from https://www.ripublication.com/ijaer18/ijaerv13n15_64.pdf

4 Vijaya Ramnath, B., Junaid Kokan, S., Niranjan Raja, R., Sathyanarayanan, R., Elanchezhian, C., Rajendra Prasad, A., & Manickavasagam, V. M. (2013). Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Materials & Design, 51, 357-366. http://dx.doi.org/10.1016/j.matdes.2013.03.102.

5 Ramadevi, P., Dhanalakshmi, S., Basavaraju, B., Raghu Patel, G. R., Pramod, V. B., & Chikkol Venkateshappa, S. (2014). Abaca fiber reinforced hybrid composites. International Journal of Applied Engineering Research, 9(23), 20273-20286. Retrieved in 2020, September 15, from https://www.ripublication.com/ijaer%208/ijaerv9n23_200.pdf

6 Venkatasubramanian, H., Chaithanyan, C., Raghuraman, S., & Panneerselvam, T. (2014). Evaluation of mechanical properties of abaca-glass-banana fiber reinforced hybrid composites. International Journal of Innovative Research in Science, Engineering and Technology, 3(1), 8169-8177. Retrieved in 2020, September 15, from https://www.ijirset.com/upload/2014/january/14_EVALUATION.pdf

7 Vishal, A., Vinay, B. G., & Rajeev, K. T. (2019). Abaca glass fiber reinforced composite materials. International Research Journal of Engineering and Technology, 6(5), 53-58. Retrieved in 2020, September 15, from https://www.irjet.net/archives/V6/i5/AIME-2019/AIME-09.pdf

8 Mustapha, R., Razak Rahmat, A., Abdul Majid, R., & Noor Hidayah Mustapha, S. (2018). Mechanical and thermal properties of montmorrillonite nanoclay reinforced epoxy resin with bio-based hardener. Materials Today Proceedings, 5(10), 21964-21972. http://dx.doi.org/10.1016/j.matpr.2018.07.057.

9 Yadav, S. M., & Yusoh, K. B. (2019). Sub-surface mechanical properties and sub-surface creep behavior of wood-plastic composites reinforced by organoclay. Science and Engineering of Composite Materials, 26(1), 114-121. http://dx.doi.org/10.1515/secm-2016-0291.

10 Kanmani, P., & Rhim, J.-W. (2013). Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and Nanoclay. Food Hydrocolloids, 35, 644-652. http://dx.doi.org/10.1016/j.foodhyd.2013.08.011.

11 Hosseini, H., Shojaee-Aliabadi, S., Hosseini, S. M., & Mirmoghtadaie, L. (2017). Nanoantimicrobials in food industry. In A. E. Oprea, & A. M. Grumezescu (Eds.), Nanotechnology applications in food: flavor, stability, nutrition and safety (Chap. 11, pp. 223-243). UK: Academic Press. http://dx.doi.org/10.1016/B978-0-12-811942-6.00011-X.

12 Shettar, M., Achutha Kini, U., Sharma, S. S., & Hiremath, P. (2017). Study on mechanical characteristics of nanoclay reinforced polymer composites. Materials Today Proceedings, 4(10), 11158-11162. http://dx.doi.org/10.1016/j.matpr.2017.08.081.

13 Nayak, S., Nayak, R. K., Panigrahi, I., & Sahoo, A. K. (2019). Tribo-mechanical responses of glass fiber reinforced polymer hybrid nanocomposites. Materials Today Proceedings, 18(7), 4042-4047. http://dx.doi.org/10.1016/j.matpr.2019.07.347.

14 Sankaran, K., Manoharan, P., Chattopadhyay, S., Nair, S., Govindan, U., Arayambath, S., & Nando, G. B. (2016). Effect of hybridization of organoclay with carbon black on the transport, mechanical, and adhesion properties of nanocomposites based on bromobutyl/epoxidized natural rubber blends. RSC Advances, 6(40), 33723-33732. http://dx.doi.org/10.1039/C5RA25970C.

15 Kumar, S., Nando, G. B., Nair, S., Unnikrishnan, G., Sreejesh, A., & Chattopadhyay, S. (2015). Effect of organically modified montmorillonite clay on morphological, physicomechanical, thermalstability, and watervapor transmission rate properties of BIIR-CO rubber nanocomposite. Rubber Chemistry and Technology, 88(1), 176-196. http://dx.doi.org/10.5254/rct.14.85996.

16 Nuruzzaman, D. M., & Chowdhury, M. A. (2012). Friction and wear of polymer and composites. In N. Hu (Ed.), Composites and their properties (pp. 299-330). UK: InTechOpen. http://dx.doi.org/10.5772/48246.

17 Vijay, B. R., & Srikantappa, A. S. (2019). Physico-mechanical and tribological properties of glass fiber based epoxy composites. International Journal of Mechanical Engineering and Robotics Research, 8(6), 929-934. http://dx.doi.org/10.18178/ijmerr.8.6.929-934.

18 Binu, P. P., George, K. E., & Vinodkumar, M. N. (2016). Effect of Nanoclay, Cloisite 15A on the mechanical properties and thermal behavior of glass fiber reinforced polyester. Procedia Technology, 25, 846-853. http://dx.doi.org/10.1016/j.protcy.2016.08.191.

19 Chandramohan, D., & Presin Kumar, A. J. (2017). Experimental data on the properties of natural fiber particle reinforced polymer composite material. Data in Brief, 13, 460-468. http://dx.doi.org/10.1016/j.dib.2017.06.020. PMid:28702485.

20 Sachin, S. R., Kannan, T. K., & Rajasekar, R. (2020). Effect of wood particulate size on the mechanical properties of PLA biocomposite. Pigment & Resin Technology, 49(6), 465-472. http://dx.doi.org/10.1108/PRT-12-2019-0117.

21 Raj, S. S., Kannan, T. K., & Rajasekar, R. (2020). Influence of prosopis juliflora wood flourin poly lactic acid– developing a novel bio-wood plastic composite. Polímeros: Ciência e Tecnologia, 30(1), e2020012. http://dx.doi.org/10.1590/0104-1428.00120.

22 Abdel-Rahim, R. H., Hasan, A. M., & Hussein, A. K. (2015). Mechanical properties of epoxy based hybrid composites reinforced by glass fibers and sic particles. The Iraqi Journal for Mechanical and Material Engineering, 15(1), 66-79. Retrieved in 2020, September 15, from https://www.iasj.net/iasj/download/b8781a4891e35f3e

23 John, K., & Naidu, S. V. (2004). Tensile properties of unsaturated polyester-based sisal fiber–glass fiber hybrid composites. Journal of Reinforced Plastics and Composites, 23(17), 1815-1819. http://dx.doi.org/10.1177/0731684404041147.

24 Shokrieh, M. M., Kefayati, A. R., & Chitsazzadeh, M. (2012). Fabrication and mechanical properties of clay/epoxy nanocomposite and its polymer concrete. Materials & Design, 40, 443-452. http://dx.doi.org/10.1016/j.matdes.2012.03.008.

25 Saeed, K., & Khan, I. (2015). Characterization of clay filled poly (butylene terephthalate) nanocomposites prepared by solution blending. Polímero: Ciência e Tecnologia, 25(6), 591-595. http://dx.doi.org/10.1590/0104-1428.2039.

26 Alsagayar, Z. S., Rahmat, A. R., Arsad, A., & Binti Mustaph, S. N. H. (2015). Tensile and flexural properties of montmorillonite Nanoclay reinforced epoxy resin composites. Advanced Materials Research, 1112, 373-376. http://dx.doi.org/10.4028/www.scientific.net/AMR.1112.373.

27 Shettar, M., Kowshik, C. S. S., Manjunath, M., & Hiremath, P. (2020). Experimental investigation on mechanical and wear properties of Nanoclay–epoxy composites. Journal of Materials Research and Technology, 9(4), 9108-9116. http://dx.doi.org/10.1016/j.jmrt.2020.06.058.

28 Mylsamy, B., Palaniappan, S. K., Pavayee Subramani, S., Pal, S. K., & Aruchamy, K. (2019). Impact of Nanoclay on mechanical and structural properties of treated Coccinia indica fibre reinforced epoxy composites. Journal of Materials Research and Technology, 8(6), 6021-6028. http://dx.doi.org/10.1016/j.jmrt.2019.09.076.

29 Sachin, S. R., Kannan, T. K., Babu, M., & Vairavel, M. (2019). Processing and testing parameters of PLA reinforced with natural plant fiber composite materials – a brief review. International Journal of Mechanical and Production Engineering Research and Development, 9(2), 933-940.

30 Uygunoglu, T., Brostow, W., & Gunes, I. (2015). Wear and friction of composites of an epoxy with boron containing wastes. Polímeros: Ciência e Tecnologia, 25(3), 271-276. http://dx.doi.org/10.1590/0104-1428.1780.

6085bb86a953953e3565a5c3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections