Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Review Article

Review of fungal chitosan: past, present and perspectives in Brazil

Batista, Anabelle Camarotti de Lima; Souza Neto, Francisco Ernesto de; Paiva, Weslley de Souza

Downloads: 2
Views: 747


Abstract: Fungal chitosan is a polymer that has been discussed and studied since 1859 in the world with great advances occurring over the years. Due to its global importance, this review aims to expose the history of the production and application of fungal chitosan in Brazil. Data collection was done at the Scielo, Sciencedirect and Pubmed databases, considering the period of the last 50 years. The inclusion criteria were articles on pure or associated chitosan and, in particular, fungal chitosan produced or applied by Brazilian research groups. At the end of the review, it was noticed a fungal chitosan very studied in different continents, and in Brazil is still used in specific and small groups. With the present work, it is expected that the diffusion of the studies will be accelerated and that potential research groups for fungal chitosan may grow through interaction with the existing ones.


fungal chitosan, biopolymer, biomedical application, biotechnology industries


Khor, E., & Lim, L. Y. (2003). Implantable applications of chitin and chitosan. Biomaterials, 24(13), 2339-2349. http://dx.doi.org/10.1016/S0142-9612(03)00026-7. PMid:12699672.

Campana-Filho, S. P., Britto, D., Curti, E., Abreu, F. R., Cardoso, M. B., Battisti, M. V., Sim, P. C., Goy, R. C., Signini, R., & Lavall, R. L. (2007). Extração, estruturas e propriedades de alfa- e beta-quitina. Química Nova, 30(3), 644-650. http://dx.doi.org/10.1590/S0100-40422007000300026.

Queiroz, M. F., Melo, K. R. T., Sabry, D. A., Sassaki, G. L., & Rocha, H. A. O. (2014). Does the use of chitosan contribute to oxalate kidney stone formation? Marine Drugs , 13(1), 141-158. http://dx.doi.org/10.3390/md13010141. PMid:25551781.

Naghdi, M., Zamani, A., & Karimi, K. (2014). A sulfuric-lactic acid process for efficient purification of fungal chitosan with intact molecular weight. International Journal of Biological Macromolecules, 63, 158-162. http://dx.doi.org/10.1016/j.ijbiomac.2013.10.042. PMid:24211428.

Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Progress in Polymer Science, 31(7), 603-632. http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001.

Struszczyk, M. H. (2002). Chitin and chitosan - part I. Properties and production, Warsaw, Poland. Polimery, 1(5), 316-325. Retrieved in 2016, July 15, from http://en.www.ichp.pl/Chitin-and-Chitosan-Part-I-Properties-and-production

Choi, W.-S., Ahn, K.-J., Lee, D.-W., Byun, M.-W., & Park, H.-J. (2002). Preparation of chitosan oligomers by irradiation. Polymer Degradation & Stability , 78(3), 533-538. http://dx.doi.org/10.1016/S0141-3910(02)00226-4.

Yue, W. (2014). Prevention of browning of depolymerized chitosan obtained by gamma irradiation. Carbohydrate Polymers, 101, 857-863. http://dx.doi.org/10.1016/j.carbpol.2013.10.011. PMid:24299848.

Tayel, A. A., Moussa, S. H., El-Tras, W. F., Knittel, D., Opwis, K., & Schollmeyer, E. (2010). Anticandidal action of fungal chitosan against Candida albicans. International Journal of Biological Macromolecules, 47(4), 454-457. http://dx.doi.org/10.1016/j.ijbiomac.2010.06.011. PMid:20603144.

Amorim, R. V. S., Souza, W., Fukushima, K., & Campos-Takaki, G. M. (2001). Faster chitosan production by Mucorelean strains in submerged culture. Brazilian Journal of Microbiology , 32(1), 20-23. http://dx.doi.org/10.1590/S1517-83822001000100005.

Amorim, R. V. S., Ledingham, W. M., Kennedy, J. F., & Campos-Takaki, G. M. (2006). Chitosan from Syncephalastrum racemosum using sugar cane substrates as inexpensive carbon sources. Food Biotechnology, 20(1), 43-53. http://dx.doi.org/10.1080/08905430500524028.

Feng, Y. L., Li, W. Q., Wu, X. Q., Cheng, J. W., & Ma, S. Y. (2010). Statistical optimization of media for mycelial growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochemical Engineering Journal, 49(1), 104-112. http://dx.doi.org/10.1016/j.bej.2009.12.002.

Liu, R. S., Li, D. S., Li, H. M., & Tang, Y. J. (2008). Response surface modeling the significance of nitrogen source on the cell growth and Tuber polysaccharides production by submerged cultivation of Chinese truffle Tuber sinense. Process Biochemistry , 43(8), 868-876. http://dx.doi.org/10.1016/j.procbio.2008.04.009.

Pokhrel, C. P., & Ohga, S. (2007). Submerged culture conditions for mycelial yield and polysaccharides production by Lyophyllum decastes. Food Chemistry , 105(2), 641-646. http://dx.doi.org/10.1016/j.foodchem.2007.04.033.

Campos-Takaki, G. M., Beakes, G. W., & Dietrich, S. M. (1983). Electron microscopic X-ray microprobe and cytochemical study of isolated cell walls of mucoralean fungi. Transactions of the British Mycological Society, 80(3), 536-541. http://dx.doi.org/10.1016/S0007-1536(83)80053-9.

Ruiz-Herrera, J. (2012). Fungal cell wall: estructure, synthesis, and assembly. In J. Ruiz-Herrera (Ed.), Current topics in medical mycology (Vol. 3, pp. 168-217). New York: Springer. http://dx.doi.org/10.1201/b11873.

Adams, D. J. (2004). Fungal cell wall chitinases and glucanases. Microbiology , 150(1), 2029-2035. http://dx.doi.org/10.1099/mic.0.26980-0. PMid:15256547.

Baker, L. G., Specht, C. A., Donlin, M. J., & Lodge, J. K. (2007). Chitosan, the Deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryotic Cell, 6(5), 855-867. http://dx.doi.org/10.1128/EC.00399-06. PMid:17400891.

Banks, I. R., Specht, C. A., Donlin, M. J., Gerik, K. J., Levitz, S. M., & Lodge, J. K. (2005). A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryotic Cell, 4(11), 1902-1912. http://dx.doi.org/10.1128/EC.4.11.1902-1912.2005. PMid:16278457.

Araki, Y., & Ito, E. (1974). A pathway of chitosan formation in Mucor rouxii : enzymatic deacetylation of chitin. Biochemical and Biophysical Research Communications , 56(3), 669-675. http://dx.doi.org/10.1016/0006-291X(74)90657-3. PMid:4826874.

Davis, L. L., & Bartnicki-Garcia, S. (1984). Chitosan synthesis by the tandem action of chitin synthetase and chitin deacetylase from Mucor rouxii. Biochemistry, 23(6), 1065-1073. http://dx.doi.org/10.1021/bi00301a005.

Kendra, D. F., Christian, D., & Hadwiger, L. A. (1989). Chitosan oligomers from Fusarium solani/pea interactions, chitinase/ß-glucanase digestion of sporelings and from fungal wall chitin actively inhibit fungal growth and enhance disease resistance. Physiological and Molecular Plant Pathology, 35(3), 215-230. http://dx.doi.org/10.1016/0885-5765(89)90052-0.

Sudarshan, N. R., Hoover, D. G., & Knorr, D. (1992). Antibacterial action of chitosan. Food Biotechnology, 6(3), 257-272. http://dx.doi.org/10.1080/08905439209549838.

Synowiecki, J., & Al-Khateeb, N. A. A. Q. (1997). Mycelia of Mucor rouxii as a source of chitin and chitosan. Food Chemistry, 60(4), 605-610. http://dx.doi.org/10.1016/S0308-8146(97)00039-3.

Braconnot, H. (1811). Sur la nature des champignons. Annales de Chimie Physique , 79, 265-304.

Odier, A. (1823). Mémoir sur la composition chimique des parties cornées des insectes. Mémoirs de la Societé d’Histoire Naturelle , 1, 29-42.

Hoppe-Seyler F. (1894). Ueber chitosan und zellulose. Germany: Ber. Deutsche Chemische Gesellschaft.

Muzzarelli, R. A. A. (1973). Natural chelating polymers: alginic acid, chitin, and chitosan. Oxford: Pergamon Press.

Muzzarelli, R. A. A. (1976).Biochemical modifications of chitin. In H. R. Hepburn (Ed.), The insect integument (pp. 63-87). New York: Elsevier Scientific Publishing Company.

Balassa, L. L. (1975). US Patent No 3903268. Estados Unidos. Retrieved in 2016, July 15, from http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/searchbool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/3903268

Leuba, J. L., & Widmer, F. (1977). Immobilization of the β-galactosidase from Aspergillus niger on chitosan. Journal of Solid-Phase Biochemistry , 3(2), 257-271. http://dx.doi.org/10.1007/BF02996747.

Leuba, J. L., & Widmer, F. (1979). Immobilization of proteinases on chitosan. Biotechnology Letters, 1(3), 109-114. http://dx.doi.org/10.1007/BF01386708.

Kasumi, T., Tsuji, M., Hayashi, K., & Tsumura, N. (1977). Preparation and some properties of chitosan bounds enzymes. Agricultural and Biological Chemistry, 41(10), 1865-1872. http://dx.doi.org/10.1080/00021369.1977.10862778.

Bissett, F., & Sternberg, D. (1978). Immobilization of Aspergillus beta-glucosidase on chitosan. Applied and Environmental Microbiology, 35(4), 750-755. PMid:25624.

Muzzarelli, R. A. A., Tanfani, F., Emanuelli, M., & Mariotti, S. (1982). N-(carboxymethylidene) chitosans and n-(carboxymethyl)- chitosans: novel chelating polyampholytes obtained from chitosan glyoxylate. Carbohydrate Research, 107(2), 199-214. http://dx.doi.org/10.1016/S0008-6215(00)80539-X.

Muzzarelli, R. A. A., Tanfani, F., & Emanuelli, M. (1984). Chelating derivatives of chitosan obtained by reaction with ascorbic acid. Carbohydrate Polymers, 4(2), 137-151. http://dx.doi.org/10.1016/0144-8617(84)90020-1.

Muzzarelli, R. A. A. (1985). Removal of uranium from solutions and brines by a derivative of chitosan and ascorbic acid. Carbohydrate Polymers, 5(2), 85-89. http://dx.doi.org/10.1016/0144-8617(85)90026-8.

Muzzarelli, R. A. A., Weckx, M., Filippini, O., & Sigon, F. (1989). Removal of trace metal ions from industrial waters, nuclear effluents and drinking water, with the aid of cross-linked N-carboxymethyl chitosan. Carbohydrate Polymers, 11(4), 293-306. http://dx.doi.org/10.1016/0144-8617(89)90004-0.

Muzzarelli, R. A. A. (1990). Book review: methods in enzymology: lignin, pectin and chitin. Carbohydrate Polymers, 12(2), 242-243. http://dx.doi.org/10.1016/0144-8617(90)90024-M.

Dobetti, L., & Delben, F. (1992). Binding of metal cations by N-carboxymethyl chitosans in water. Carbohydrate Polymers, 18(4), 273-282. http://dx.doi.org/10.1016/0144-8617(92)90092-5.

Hoagland, P. D., & Parris, N. (1996). Chitosan/pectin laminated films. Journal of Agricultural and Food Chemistry, 44(7), 1915-1919. http://dx.doi.org/10.1021/jf950162s.

Jin, L., & Bai, R. (2002). Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir, 18(25), 9765-9770. http://dx.doi.org/10.1021/la025917l.

Amorim, R. V. S., Melo, E. S., Carneiro-da-Cunha, M. G., Ledingham, W. M., & Campos-Takaki, G. M. (2003). Chitosan from Syncephalastrum racemosum used as a film support for lípase immobilization. Bioresource Technology, 89(1), 35-39. http://dx.doi.org/10.1016/S0960-8524(03)00035-X. PMid:12676498.

Chiou, M. S., Ho, P. Y., & Li, H. Y. (2004). Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes and Pigments, 60(1), 69-84. http://dx.doi.org/10.1016/S0143-7208(03)00140-2.

Franco, L. O., Maia, R. C. C., Porto, A. L. F., Messias, A. S., Fukushima, K., & Campos-Takaki, G. M. (2004). Heavy metal biosorption by chitin and chitosan isolated from Cunninghamella elegans (IFM 46109). Brazilian Journal of Microbiology, 35(3), 243-247. http://dx.doi.org/10.1590/S1517-83822004000200013.

Jeon, C., & Ha Park, K. (2005). Adsorption and desorption characteristics of mercury (II) ions using aminated chitosan bead. Water Research, 39(16), 3938-3944. http://dx.doi.org/10.1016/j.watres.2005.07.020. PMid:16129473.

Rungsardthong, V., Wongvuttanakul, N., Kongpien, N., & Chotiwaranon, P. (2006). Application of fungal chitosan for clarification of apple juice. Process Biochemistry , 41(3), 589-593. http://dx.doi.org/10.1016/j.procbio.2005.08.003.

Zhao, F., Yu, B., Yue, Z., Wang, T., Wen, X., Liu, Z., & Zhao, C. (2007). Preparation of porous chitosan gel beads for copper(II) ion adsorption. Journal of Hazardous Materials , 147(1-2), 67-73. http://dx.doi.org/10.1016/j.jhazmat.2006.12.045. PMid:17258856.

Crini, G., & Badot, P. M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Progress in Polymer Science, 33(4), 399-447. http://dx.doi.org/10.1016/j.progpolymsci.2007.11.001.

Baroni, P., Vieira, R. S., Meneghetti, E., da Silva, M. G., & Beppu, M. M. (2008). Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes. Journal of Hazardous Materials, 152(3), 1155-1163. http://dx.doi.org/10.1016/j.jhazmat.2007.07.099. PMid:17826905.

Perioli, L., Ambrogi, V., Pagano, C., Scuota, S., & Rossi, C. (2009). FG90 chitosan as a new polymer for metronidazole mucoadhesive tablets for vaginal administration. International Journal of Pharmaceutics, 377(1-2), 120-127. http://dx.doi.org/10.1016/j.ijpharm.2009.05.016. PMid:19454304.

Cheung, W. H., Szeto, Y. S., & Mckay, G. (2009). Enhancing the adsorption capacities of acid dyes by chitosan nano particles. Bioresource Technology, 100(3), 1143-1148. http://dx.doi.org/10.1016/j.biortech.2008.07.071. PMid:18829305.

Abdull Rasad, M. S. B., Halim, A. S., Hashim, K., Rashid, A. H. A., Yusof, N., & Shamsuddin, S. (2010). In vitro evaluation of novel chitosan derivatives sheet and paste cytocompatibility on human dermal fibroblasts. Carbohydrate Polymers, 79(4), 1094-1100. http://dx.doi.org/10.1016/j.carbpol.2009.10.048.

Tajdini, F., Amini, M. A., Nafissi-Varcheh, N., & Faramarzi, M. A. (2010). Production, physiochemical and antimicrobial properties of fungal chitosan from Rhizomucor miehei and Mucor racemosus. International Journal of Biological Macromolecules, 47(2), 180-183. http://dx.doi.org/10.1016/j.ijbiomac.2010.05.002. PMid:20471417.

Gomathi, P., Ragupathy, D., Choi, J. H., Yeum, J. H., Lee, S. C., Kim, J. C., Lee, S. H., & Ghim, H. D. (2011). Fabrication of novel chitosan nanofiber/gold nanoparticles composite towards improved performance for a cholesterol sensor. Sensors and Actuators. B, Chemical, 153(1), 44-49. http://dx.doi.org/10.1016/j.snb.2010.10.005.

Harris, R., Lecumberri, E., Mateos-Aparicio, I., Mengíbar, M., & Heras, M. (2011). Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydrate Polymers, 84(2), 803-806. http://dx.doi.org/10.1016/j.carbpol.2010.07.003.

Li, X., Shi, X., Wang, M., & Du, Y. (2011). Xylan chitosan conjugate: a potential food preservative. Food Chemistry, 126(2), 520-525. http://dx.doi.org/10.1016/j.foodchem.2010.11.037. PMid:25212164.

Batista, A. C. L., Villanueva, E. R., Amorim, R. V. S., Tavares, M. T., & Campos-Takaki, G. M. (2011). Chromium (VI) ion adsorption features of chitosan film and its chitosan/zeolite conjugate 13X film. Molecules (Basel, Switzerland), 16(5), 3569-3579. http://dx.doi.org/10.3390/molecules16053569. PMid:21527884.

Yu, T., Yu, C., Chen, F., Sheng, K., Zhou, T., Zunun, M., Abudu, O., Yang, S., & Zheng, X. (2012). Integrated control of blue mold in pear fruit by combined application of chitosan, a biocontrol yeast and calcium chloride. Postharvest Biology and Technology , 69, 49-53. http://dx.doi.org/10.1016/j.postharvbio.2012.02.007.

Moussa, S. H., Tayel, A. A., & Al-Turki, I. A. (2013). Evaluation of fungal chitosan as a biocontrol and antibacterial agent using fluorescence-labeling. International Journal of Biological Macromolecules, 54, 204-208. http://dx.doi.org/10.1016/j.ijbiomac.2012.12.029. PMid:23270832.

Paiva, W. S., Souza, F. E., No., & Batista, A. C. L. (2014). Avaliação da atividade antibacteriana da quitosana fúngica. Perspectivas Online: Biológicas e Saúde, 13, 37-43. Retrieved in 2016, July 15, from http://www.seer.perspectivasonline.com.br/index.php/biologicas_e_saude/article/view/495/442

Oliveira, C. E. V., Magnani, M., Sales, C. V., Pontes, A. L. S., Campos-Takaki, G. M., Stamford, T. C. M., & Souza, E. L. (2014). Effects of chitosan from Cunninghamella elegans on virulence of post-harvest pathogenic fungi in table grapes (Vitis labrusca L.). International Journal of Food Microbiology , 171, 54-61. http://dx.doi.org/10.1016/j.ijfoodmicro.2013.11.006. PMid:24321603.

Tayel, A. A., Ibrahim, S. I. A., Al-Saman, M. A., & Moussa, S. H. (2014). Fungal chitosan from date wastes and its application as a biopreservative for minced meat. International Journal of Biological Macromolecules, 69, 471-475. http://dx.doi.org/10.1016/j.ijbiomac.2014.05.072. PMid:24942991.

Taillandier, P., Joannis-Cassan, C., Jentzer, J. B., Gautier, C. S. N., Sieczkowski, N., Granes, D., & Brandam, C. (2015). Effect of a fungal chitosan preparation on Brettanomyces bruxellensis, a wine contaminant. Journal of Applied Microbiology, 118(1), 123-131. http://dx.doi.org/10.1111/jam.12682. PMid:25363885.

Souza, F. E., No., Silva, H. C. A., Paiva, W. S., Torres, T. M., Rocha, A. C. P., Bezerra, A., & Batista, A. C. L. (2017). Quitosana fúngica sobre larvas de nematoides gastrintestinais de caprinos. Arquivos do Instituto Biológico, 84(0), 1-5. http://dx.doi.org/10.1590/1808-1657000542015.

Kitozyme. (2017, June 26). Belgium. Retrieved in 2016, July 15, from http://kitozyme.com/eng/innovation/technologies-with-non-animal-chitosan-and-chitin-glucan/kionutrime-csg

InvivoGen. (2017, June 26). San Diego. Retrieved in 2016, July 15, from http://www.invivogen.com/chitosan-vaccigrade

Inbiose. (2017, June 26). Belgium. Retrieved in 2016, July 15, from http://inbiose.com/products.html

Franco, L. O., Stamford, T. C. M., Stamford, N. P., & Campos-Takaki, G. M. (2005). Cunningamella elegans (IFM 46109) como fonte de quitina e quitosana. Reviews in Analgesia, 14, 40-44. Retrieved in 2016, July 15, from http://www.scielo.cl/scielo.php?script=sci_nlinks&ref=2120900&pid=S07173458200700010000600009&lng=es

Stamford, T. C. M., Stamford, T. L. M., Stamford, N. P., Barros, B., No., & Campos-Takaki, G. M. (2007). Growth of Cunninghamella elegans UCP 542 and production of chitin and chitosan using yam bean medium. Electronic Journal of Biotechnology , 10(1), 1-6. http://dx.doi.org/10.2225/vol10-issue5-fulltext-1.

Fai, A. E. C., Stamford, T. C. M., & Stamford, T. L. M. (2008). Potencial biotecnológico de quitosana em sistemas de conservação de alimentos. Revista Iberoamericana de Polímeros, 9(5), 435-451. Retrieved in 2016, July 15, from http://www.ehu.eus/reviberpol/pdf/JUL08/fai.pdf

Bento, R. A., Stamford, T. L. M., Campos-Takaki, G. M., Stamford, T. C. M., & Souza, E. L. (2009a). Potential of chitosan from Mucor rouxxi UCP064 as alternative natural compound to inhibit Listeria monocytogenes. Brazilian Journal of Microbiology, 40(3), 583-589. http://dx.doi.org/10.1590/S1517-83822009000300022. PMid:24031403.

Bento, R. A., Souza, E. L., Stamford, T. L. M., & Stamford, T. C. M. (2009b). Perspectiva e potencial aplicação de quitosana como inibidor de Listeria monocytogenes em produtos cárneos. Revista Iberoamericana de Polímeros, 10(5), 260-274. Retrieved in 2016, July 15, from http://www.ehu.eus/reviberpol/pdf/SEP09/bento.pdf

Batista, A. C. L., Silva, M. C. F., Batista, J. B., Nascimento, A. E., & Campos-Takaki, G. M. (2013). Eco-friendly chitosan production by Syncephalastrum racemosum and application to the removal of acid orange 7 (AO7) from wastewaters. Molecules , 18(7), 7646-7660. http://dx.doi.org/10.3390/molecules18077646. PMid:23884118.

Freitas, L. S., Martins, E. S., & Ferreira, O. S. (2014). Produção e caracterização parcial de α-amilase de Syncephalastrum racemosum. Revista Brasileira de Biociências, 12(4), 226-232. Retrieved in 2016, July 15, from http://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/3120

Cardoso, A., Lins, C. I. M., Santos, E. R., Silva, M. C. F., & Campos-Takaki, G. M. (2012). Microbial enhance of chitosan production by Rhizopus arrhizus using agroindustrial substrates. Molecules, 17(5), 4904-4914. http://dx.doi.org/10.3390/molecules17054904. PMid:22543505.

Berger, L. R. R., Stamford, T. C. M., Stamford-Arnaud, T. M., Alcântara, S. R. C., Silva, A. C., Silva, A. M., Nascimento, A. E., & Campos-Takaki, G. M. (2014). Green conversion of agroindustrial wastes into chitin and chitosan by Rhizopus arrhizus and Cunninghamella elegans strains. International Journal of Molecular Sciences, 15(5), 9082-9102. http://dx.doi.org/10.3390/ijms15059082. PMid:24853288.

Paiva, W. S., Souza, F. E., No., & Batista, A. C. L. (2017). Characterization of polymeric biomaterial chitosan extracted from Rhizopus stolonifer. Journal of Polymer Materials, 34(1), 115-121. Retrieved in 2016, July 15, from https://search.proquest.com/openview/80a89aa7245f255dd08dd6497c2ae7af/1?pq-origsite=gscholar&cbl=506337

Bento, A. R., Stamford, T. L. M., Stamford, T. C. M., Andrade, S. A. C., & Souza, E. L. (2011). Sensory evaluation and inhibition of Listeria monocytogenes in bovine pâté added of chitosan from Mucor rouxii. Lebensmittel-Wissenschaft + Technologie, 44(2), 588-591. http://dx.doi.org/10.1016/j.lwt.2010.08.016.

Fai, A. E. C., Stamford, T. C. M., Stamford-Arnaud, T. M., Santa-Cruz, P. D. A., Silva, M. C. F., Campos-Takaki, G. M., & Stamford, T. L. M. (2011). Physico-chemical characteristics and functional properties of chitin and chitosan produced by Mucor circinelloides using yam bean as substrate. Molecules, 16(8), 7143-7154. http://dx.doi.org/10.3390/molecules16087143. PMid:21862956.

Souza, E. L., Sales, C. V., Oliveira, C. E. V., Lopes, L. A. A., Conceição, M. L., Berger, L. R. R., & Stamford, T. C. M. (2015). Efficacy of acoating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits. Frontiers in Microbiology , 6, 732. http://dx.doi.org/10.3389/fmicb.2015.00732. PMid:26257717.

Berger, L. R. R., Stamford, N. P., Willadino, L. G., Laranjeira, D., Lima, M. A. B., Malheiros, S. M. M., Oliveira, W. J., & Stamford, T. C. M. (2016). Cowpea resistance induced against Fusarium oxysporum f. sp. tracheiphilum by crustaceous chitosan and by biomass and chitosan obtained from Cunninghamella elegans. Biological Control, 92, 45-54. http://dx.doi.org/10.1016/j.biocontrol.2015.09.006.

Campos-Takaki, G. M. (2005). The fungal versatility on the copolymers chitin and chitosan production. In P. K. Dutta (Ed.), Chitin and chitosan opportunities and challenge s (pp. 69-94). India: Dubey Printers and Graphics.

White, S. A., Farina, P. R., & Fulton, I. (1979). Production and isolation of chitosan from Mucor rouxii. Applied and Environmental Microbiology , 38(2), 323-328. PMid:518086.

Crestini, C., Kovac, B., & Giovannozzi-Sermanni, G. (1996). Production and isolation of chitosan by submerged and solidstate fermentation from Lentinus edodes. Biotechnology and Bioengineering, 50(2), 207-210. http://dx.doi.org/10.1002/bit.260500202. PMid:18626937.

Rane, K. D., & Hoover, D. G. (1993). Production of chitosan by fungi. Food Biotechnology , 7(1), 11-33. http://dx.doi.org/10.1080/08905439309549843.

Hu, K. J., Yeung, K. W., Ho, K. P., & Hu, J. L. (1999). Rapid extraction of high-quality chitosan from mycelia of Absidia glauca. Journal of Food Biochemistry , 23(2), 187-196. http://dx.doi.org/10.1111/j.1745-4514.1999.tb00013.x.

Batista, A. C. L., Bandeira, M. G. L., Souza, F. E., No., Paiva, W. S., Rodrigues, D. N. R., & Costa, A. C. A. A. (2014). Obtenção de quitosana fúngica crescida em meio alternativo constituído com farinha de carapaça de camarão. Revista Saúde e Ciência On Line, 3(3), 11-17. Retrieved in 2016, July 15, from http://www.ufcg.edu.br/revistasaudeeciencia/index.php/RSC-UFCG/article/view/246

Bessa-Junior, A. P., & Gonçalves, A. A. (2013). Análises econômica e produtiva da quitosana extraída do exoesqueleto de camarão. Acta Of Fisheries and Aquatic Resources, 1(1), 13-28. Retrieved in 2016, July 15, from http://www.seer.ufs.br/index.php/ActaFish/article/view/1589/1488

Berger, L. R. R., Stamford, T. C. M., Stamford-Arnaud, T. M., Franco, L. O., Nascimento, A. E., Cavalcante, H. M. M., Macedo, R. O., & Campos-Takaki, G. M. (2014). Effect of corn steep liquor (CSL) and cassava wastewater (CW) on chitin and chitosan production by Cunninghamella elegans and their physicochemical characteristics and cytotoxicity. Molecules, 19(3), 2771-2792. http://dx.doi.org/10.3390/molecules19032771. PMid:24590203.

Neves, A. C., Schaffner, R. A., Kugelmeier, C. L., Wiest, A. M., & Arantes, M. K. (2013). Otimização de processos de obtenção de quitosana a partir de resíduo da carcinicultura para aplicações ambientais. Revista Brasileira de Energias Renováveis, 2(1), 34-47. http://dx.doi.org/10.5380/rber.v2i1.33800.

Jaworska, M. M., & Konieczna, E. (2001). The influence of supplemental components in nutrient medium on chitosan formation by the fungus Absidia orchidis. Applied Microbiology and Biotechnology, 56(1-2), 220-224. http://dx.doi.org/10.1007/s002530000591. PMid:11499934.

Tanaka, H. (2001). Scale-up for fermentative production. Japão: Kyoritu Shuppan.

Chatterjee, S., Adhya, M., Guha, A. K., & Chatterjee, B. P. (2005). Chitosan from Mucor rouxii: production and physico-chemical characterization. Process Biochemistry, 40(1), 395-400. http://dx.doi.org/10.1016/j.procbio.2004.01.025.

Chatterjee, S., Chatterjee, S., Chatterjee, B. P., & Guha, A. K. (2008). Enhancement of growth and chitosan production by Rhizopus oryzae in whey medium by plant growth hormones. International Journal of Biological Macromolecules , 42(2), 120-126. http://dx.doi.org/10.1016/j.ijbiomac.2007.10.006. PMid:18023862.

Martínez-Camacho, A. P., Cortez-Rocha, M. O., Ezquerra-Brauer, J. M., Graciano-Verdugo, A. Z., Rodriguez-Félix, F., Castillo-Ortega, M. M., Yépiz-Gómez, M. S., & Plascencia-Jatomea, M. (2010). Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 82(2), 305-315. http://dx.doi.org/10.1016/j.carbpol.2010.04.069.

Khan, T. A., Peh, K. K., & Ch’ng, H. S. (2002). Reporting degree of deacetylation values of chitosan: the influence of analytical methods. Journal of Pharmacy & Pharmaceutical Sciences, 5(3), 205-212. PMid:12553887.

Rinaudo, M., Milas, M., & Dung, P. L. (1993). Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. International Journal of Biomacromolecules, 15(5), 281-285. http://dx.doi.org/10.1016/0141-8130(93)90027-J. PMid:8251442.

Stamford, N. P., Santos, C. E. R. S., Stamford, T. C. M., Franco, L. C., & Arnaud, T. M. S. (2015). BR 10 2013 003043 0. Rio de Janeiro: INPI. Retrieved in 2016, July 15, from https://gru.inpi.gov.br/pePI/servlet/PatenteServletController?Action=detail&CodPedido=987310&SearchParameter=BIOFERTILIZANTE%20%20%20%20%20%20&Resumo=&Titulo=

Chien, R., Yen, M., & Mau, J. (2016). Antimicrobial and antitumor activities of chitosan from shiitak estipes, compared to commercial chitosan from crab shells. Carbohydrate Polymers, 138(1), 259-264. http://dx.doi.org/10.1016/j.carbpol.2015.11.061. PMid:26794761.

Tayel, A. A. (2016). Microbial chitosan as a biopreservative for fish sausages. International Journal of Biological Macromolecules, 93(1), 41-46. http://dx.doi.org/10.1016/j.ijbiomac.2016.08.061. PMid:27565293.

Tayel, A. A., El-Tras, W. F., & Elguindy, N. M. (2016). The potentiality of cross-linked fungal chitosan to control watercontamination through bioactive filtration. International Journal of Biological Macromolecules, 88(1), 59-65. http://dx.doi.org/10.1016/j.ijbiomac.2016.03.018. PMid:26995612.

5b7c664f0e88253732896e52 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections