Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Melt-mixed nanocomposites of SIS/MWCNT: rheological, electrical and structural behavior

Ludimilla Barbosa Ferreira; Rayane de Souza Fernandes; Rosario Elida Suman Bretas; João Paulo Ferreira Santos

Downloads: 0
Views: 21


In this work, nanocomposites based on the triblock copolymer polystyrene-b-polyisoprene-b-polystyrene (SIS) thermoplastic elastomer filled with multiwall carbon nanotubes (MWCNT) were obtained by melt mixing. The nanocomposites were characterized by oscillatory rheometry, electrical resistivity, small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). The results showed that both, rheological and electrical percolation were achieved at MWCNT loadings between 1-3 vol.%. Rheological tests revealed that the insertion of MWCNT into SIS significantly enhanced the process of relaxation of SIS blocks. Resistivity measurements revealed that conductive nanocomposites were obtained at MWCNT loadings ~1.6 vol.%. The electrical resistivity decreased eleven orders of magnitude from neat SIS to SIS/ 5 vol.% MWCNT. Finally, SAXS and TEM showed that the melt mixing process and the presence of MWCNT hampered the self-assembly of SIS into well-ordered domains.



SIS, MWCNT, rheological percolation, electrical percolation, self-assembly


1 Santos, J. P. F., de Melo Carvalho, B., & Suman Bretas, R. E. (2019). Remarkable change in the broadband electrical behavior of poly(vinylidene fluoride)–multiwalled carbon nanotube nanocomposites with the use of different processing routes. Journal of Applied Polymer Science, 136(17), 1-10. http://dx.doi.org/10.1002/app.47409.

2 Bauhofer, W., & Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69(10), 1486-1498. http://dx.doi.org/10.1016/j.compscitech.2008.06.018.

3 Ferreira Santos, J. P., França Melo, G. H., Gonçalves, A. M., Eiras, J. A., & Suman Bretas, R. E. (2018). Flexible conductive poly(styrene-butadiene-styrene)/carbon nanotubes nanocomposites: self-assembly and broadband electrical behavior. Journal of Applied Polymer Science, 135(34), e46650. http://dx.doi.org/10.1002/app.46650.

4 Kim, J., Kim, B., & Jung, B. (2002). Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene copolymers. Journal of Membrane Science, 207(1), 129-137. http://dx.doi.org/10.1016/S0376-7388(02)00138-2.

5 Ji, M., Deng, H., Yan, D., Li, X., Duan, L., & Fu, Q. (2014). Selective localization of multi-walled carbon nanotubes in thermoplastic elastomer blends: an effective method for tunable resistivity-strain sensing behavior. Composites Science and Technology, 92, 16-26. http://dx.doi.org/10.1016/j.compscitech.2013.11.018.

6 Costa, P., Ribeiro, S., & Lanceros-Mendez, S. (2015). Mechanical vs. electrical hysteresis of carbon nanotube/styrene-butadiene-styrene composites and their influence in the electromechanical response. Composites Science and Technology, 109, 1-5. http://dx.doi.org/10.1016/j.compscitech.2015.01.006.

7 Ilčíková, M., Mrlík, M., Sedláček, T., Chorvát, D., Krupa, I., Šlouf, M., Koynov, K., & Mosnáček, J. (2014). Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene-b-styrene block copolymer. Polymer, 55(1), 211-218. http://dx.doi.org/10.1016/j.polymer.2013.11.031.

8 Hoheisel, T. N., Hur, K., & Wiesner, U. B. (2015). Block copolymer-nanoparticle hybrid self-assembly. Progress in Polymer Science, 40, 3-32. http://dx.doi.org/10.1016/j.progpolymsci.2014.10.002.

9 Sarkar, B., & Alexandridis, P. (2014). Block copolymer-nanoparticle composites: Structure, functional properties, and processing. Progress in Polymer Science, 40, 33-62. http://dx.doi.org/10.1016/j.progpolymsci.2014.10.009.

10 Chiu, J. J., Kim, B. J., Kramer, E. J., & Pine, D. J. (2005). Control of nanoparticle location in block copolymers. Journal of the American Chemical Society, 127(14), 5036-5037. http://dx.doi.org/10.1021/ja050376i. PMid:15810835.

11 Silva, S. A., Marques, C. L., & Cardozo, N. S. M. (2012). Composition and performance of styrene-isoprene-styrene (SIS) and styrene-butadiene-styrene (SBS) hot melt pressure sensitive adhesives. The Journal of Adhesion, 88(2), 187-199. http://dx.doi.org/10.1080/00218464.2012.648873.

12 Phillips, J. P., Deng, X., Stephen, R. R., Fortenberry, E. L., Todd, M. L., McClusky, D. M., Stevenson, S., Misra, R., Morgan, S., & Long, T. E. (2007). Nano- and bulk-tack adhesive properties of stimuli-responsive, fullerene–polymer blends, containing polystyrene-block-polybutadiene-block-polystyrene and polystyrene-block-polyisoprene-block-polystyrene rubber-based adhesives. Polymer, 48(23), 6773-6781. http://dx.doi.org/10.1016/j.polymer.2007.08.050.

13 Garate, H., Fascio, M. L., Mondragon, I., D’Accorso, N. B., & Goyanes, S. (2011). Surfactant-aided dispersion of polystyrene-functionalized carbon nanotubes in a nanostructured poly (styrene-b-isoprene-b-styrene) block copolymer. Polymer, 52(10), 2214-2220. http://dx.doi.org/10.1016/j.polymer.2011.03.032.

14 Brook, I., Mechrez, G., Suckeveriene, R. Y., Tchoudakov, R., & Narkis, M. (2013). A novel approach for preparation of conductive hybrid elastomeric nano-composites. Polymers for Advanced Technologies, 24(8), 758-763. http://dx.doi.org/10.1002/pat.3142.

15 Ponnamma, D., Sadasivuni, K. K., Thomas, S., Krupa, I., & AlMa’adeed, M. A.-A. (2016). Flexible oil sensors based on multiwalled carbon nanotube-filled isoprene elastomer composites. Rubber Chemistry and Technology, 89(2), 306-315. http://dx.doi.org/10.5254/rct.15.84841.

16 Jo, Y., Kim, J. Y., Kim, S. Y., Seo, Y. H., Jang, K. S., Lee, S. Y., Jung, S., Ryu, B. H., Kim, H. S., Park, J. U., Choi, Y., & Jeong, S. (2017). 3D-printable, highly conductive hybrid composites employing chemically-reinforced, complex dimensional fillers and thermoplastic triblock copolymers. Nanoscale, 9(16), 5072-5084. http://dx.doi.org/10.1039/C6NR09610G. PMid:28181617.

17 Santos, J. P. F., da Silva, A. B., Sundararaj, U., & Bretas, R. E. S. (2015). Novel electrical conductive hybrid nanostructures based on PA 6/MWCNTCOOH electrospun nanofibers and anchored MWCNTCOOH. Polymer Engineering and Science, 55(6), 1263-1272. http://dx.doi.org/10.1002/pen.24064.

18 Cui, H., Eres, G., Howe, J. Y., Puretkzy, A., Varela, M., Geohegan, D. B., & Lowndes, D. H. (2003). Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition. Chemical Physics Letters, 374(3–4), 222-228. http://dx.doi.org/10.1016/S0009-2614(03)00701-2.

19 White, C. M., Banks, R., Hamerton, I., & Watts, J. F. (2016). Characterisation of commercially CVD grown multi-walled carbon nanotubes for paint applications. Progress in Organic Coatings, 90, 44-53. http://dx.doi.org/10.1016/j.porgcoat.2015.09.020.

20 Chiu, F. C. (2014). Comparisons of phase morphology and physical properties of PVDF nanocomposites filled with organoclay and/or multi-walled carbon nanotubes. Materials Chemistry and Physics, 143(2), 681-692. http://dx.doi.org/10.1016/j.matchemphys.2013.09.054.

21 Celzard, A., McRae, E., Deleuze, C., Dufort, M., Furdin, G., & Marêché, J. F. (1996). Critical concentration in percolating systems containing a high-aspect-ratio filler. Physical review. B, Condensed matter, 53(10), 6209-6214. http://dx.doi.org/10.1103/PhysRevB.53.6209. PMid:9982020.

22 White, C. M., Banks, R., Hamerton, I., & Watts, J. F. (2016). Characterisation of commercially CVD grown multi-walled carbon nanotubes for paint applications. Progress in Organic Coatings, 90, 44-53. http://dx.doi.org/10.1016/j.porgcoat.2015.09.020.

23 Georgopanos, P., Handge, U. A., Abetz, C., & Abetz, V. (2016). Influence of block sequence and molecular weight on morphological, rheological and dielectric properties of weakly and strongly segregated styrene-isoprene triblock copolymers. Polymer, 104, 279-295. http://dx.doi.org/10.1016/j.polymer.2016.02.039.

24 Sakamoto, N., Hashimoto, T., Han, C. D., Kim, D., & Vaidya, N. Y. (1997). Order−order and order−disorder transitions in a polystyrene-block-polyisoprene-block-polystyrene copolymer. Macromolecules, 30(6), 1621-1632. http://dx.doi.org/10.1021/ma960610c.

25 Ecco, L. G., Dul, S., Schmitz, D. P., Barra, G. M. O., Soares, B. G., Fambri, L., & Pegoretti, A. (2018). Rapid prototyping of efficient electromagnetic interference shielding polymer composites via fused deposition modeling. Applied Sciences (Switzerland), 9(1), 37-56. http://dx.doi.org/10.3390/app9010037.

26 Hoseini, M., Haghtalab, A., & Famili, M. H. N. (2017). Rheology and morphology study of immiscible linear low-density polyethylene/poly(lactic acid) blends filled with nanosilica particles. Journal of Applied Polymer Science, 134(46), 1-12. http://dx.doi.org/10.1002/app.45526.

27 Beatrice, C. A. G., Branciforti, M. C., Alves, R. M. V., & Bretas, R. E. S. (2010). Rheological, mechanical, optical, and transport properties of blown films of polyamide 6/residual monomer/montmorillonite nanocomposites. Journal of Applied Polymer Science, 116(6), 3581-3592. http://dx.doi.org/10.1002/app.31898.

28 Bueche, F. (1970). Viscoelastic properties of polymers. Polymer Letters, 8(8), 595. http://dx.doi.org/10.1002/pol.1970.110080815.

29 Edwards, S. (1988). Dynamics of polymeric liquids. British Polymer Journal, 20(3), 299-302. http://dx.doi.org/10.1002/pi.4980200323.

30 Marini, J., & Bretas, R. E. S. (2013). Influence of shape and surface modification of nanoparticle on the rheological and dynamic-mechanical properties of polyamide 6 nanocomposites. Polymer Engineering and Science, 53(7), 1512-1528. http://dx.doi.org/10.1002/pen.23405.

31 Zhao, J., Morgan, A. B., & Harris, J. D. (2005). Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer, 46(20), 8641-8660. http://dx.doi.org/10.1016/j.polymer.2005.04.038.

32 Marini, J., & Bretas, R. E. S. (2013). Influence of shape and surface modification of nanoparticle on the rheological and dynamic-mechanical properties of polyamide 6 nanocomposites. Polymer Engineering and Science, 53(7), 1512-1528. http://dx.doi.org/10.1002/pen.23405.

33 Arjmand, M., Mahmoodi, M., Gelves, G. A., Park, S., & Sundararaj, U. (2011). Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate. Carbon, 49(11), 3430-3440. http://dx.doi.org/10.1016/j.carbon.2011.04.039.

34 Balberg, I., Azulay, D., Goldstein, Y., Jedrzejewski, J., Ravid, G., & Savir, E. (2013). The percolation staircase model and its manifestation in composite materials. European Physical Journal, 86(10), 428-445. http://dx.doi.org/10.1140/epjb/e2013-40200-7.

35 Pötschke, P., Dudkin, S. M., & Alig, I. (2003). Dielectric spectroscopy on melt processed polycarbonate: multiwalled carbon nanotube composites. Polymer, 44(17), 5023-5030. http://dx.doi.org/10.1016/S0032-3861(03)00451-8.

36 Santos, J. P. F., Arjmand, M., Melo, G. H. F., Chizari, K., Bretas, R. E. S., & Sundararaj, U. (2018). Electrical conductivity of electrospun nanofiber mats of polyamide 6/polyaniline coated with nitrogen-doped carbon nanotubes. Materials & Design, 141, 333-341. http://dx.doi.org/10.1016/j.matdes.2017.12.052.

37 Berhan, L., & Sastry, A. M. (2007). Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Physical Review E: Covering Statistical, Nonlinear, and Soft Matter Physics, 75(4), 1-8. http://dx.doi.org/10.1103/PhysRevE.75.041120. PMid:17500878.

38 Nasti, G., Gentile, G., Cerruti, P., Carfagna, C., & Ambrogi, V. (2016). Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends. Polymer, 99, 193-203. http://dx.doi.org/10.1016/j.polymer.2016.06.058.

39 Calisi, N., Giuliani, A., Alderighi, M., Schnorr, J. M., Swager, T. M., Di Francesco, F., & Pucci, A. (2013). Factors affecting the dispersion of MWCNTs in electrically conducting SEBS nanocomposites. European Polymer Journal, 49(6), 1471-1478. http://dx.doi.org/10.1016/j.eurpolymj.2013.03.029.

40 Fu, S. Y., Chen, Z. K., Hong, S., & Han, C. C. (2009). The reduction of carbon nanotubes (CNT) length during the manufacturing of CNT/polymer composites and a method to simultaneously determine the resulting CNT and interfacial strenghts. Carbon, 47(14), 3192-3200. http://dx.doi.org/10.1016/j.carbon.2009.07.028.

41 Kuester, S., Barra, G. M. O., Ferreira, J. C., Jr., Soares, B. G., & Demarquette, N. R. (2016). Electromagnetic interference shielding and electrical properties of nanocomposites based on poly (styrene-b-ethylene-ran-butylene-b-styrene) and carbon nanotubes. European Polymer Journal, 77, 43-53. http://dx.doi.org/10.1016/j.eurpolymj.2016.02.020.

42 Oskouyi, A. B., Sundararaj, U., & Mertiny, P. (2014). Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets. Materials (Basel), 7(4), 2501-2521. http://dx.doi.org/10.3390/ma7042501. PMid:28788580.

43 Hu, N., Karube, Y., Yan, C., Masuda, Z., & Fukunaga, H. (2008). Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Materialia, 56(13), 2929-2936. http://dx.doi.org/10.1016/j.actamat.2008.02.030.

44 Shi, W., Li, W., Delaney, K. T., Fredrickson, G. H., Kramer, E. J., Ntaras, C., Avgeropoulos, A., & Lynd, N. A. (2016). Morphology re-entry in asymmetric PS-PI-PS’ triblock copolymer and PS homopolymer blends. Journal of Polymer Science. Part B, Polymer Physics, 54(2), 169-179. http://dx.doi.org/10.1002/polb.23811.

45 Lin, T. C., Yang, K. C., Georgopanos, P., Avgeropoulos, A., & Ho, R. M. (2017). Gyroid-structured nanoporous polymer monolith from PDMS-containing block copolymers for templated synthesis. Polymer, 126, 360-367. http://dx.doi.org/10.1016/j.polymer.2017.04.045.

46 Lee, S., Lee, K., Jang, J., Choung, J. S., Choi, W. J., Kim, G. J., Kim, Y. W., & Shin, J. (2017). Sustainable poly(ε-decalactone)−poly(L-lactide) multiarm star copolymer architectures for thermoplastic elastomers with fixed molar mass and block ratio. Polymer, 112, 306-317. http://dx.doi.org/10.1016/j.polymer.2017.02.008.

47 Sota, N., Saijo, K., Hasegawa, H., Hashimoto, T., Amemiya, Y., & Ito, K. (2013). Directed self-assembly of block copolymers into twin BCC-sphere: phase transition process from aligned hex-cylinder to BCC-sphere induced by a temperature jump between the two equilibrium phases. Macromolecules, 46(6), 2298-2316. http://dx.doi.org/10.1021/ma400039p.

48 Stadler, R., Auschra, C., Beckmann, J., Krappe, U., Voight-Martin, I., & Leibler, L. (1995). Morphology and thermodynamics of symmetric poly (A-block-B-block-C) triblock copolymers. Macromolecules, 28(9), 3080-3091. http://dx.doi.org/10.1021/ma00113a010.

49 Mishra, V., Fredrickson, G. H., & Kramer, E. J. (2011). SCFT simulations of an order–order transition in thin films of diblock and triblock copolymers. Macromolecules, 44(13), 5473-5480. http://dx.doi.org/10.1021/ma200297f.

50 Chen, G. X., Li, Y., & Shimizu, H. (2007). Ultrahigh-shear processing for the preparation of polymer/carbon nanotube composites. Carbon, 45(12), 2334-2340. http://dx.doi.org/10.1016/j.carbon.2007.07.017.

51 Li, Y., & Shimizu, H. (2009). Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules, 42(7), 2587-2593. http://dx.doi.org/10.1021/ma802662c.

52 Tournus, F., Latil, S., Heggie, M. I., & Charlier, J.-C. (2005). π-stacking interaction between carbon nanotubes and organic molecules. Physical Review. B, 72(7), 1-5. http://dx.doi.org/10.1103/PhysRevB.72.075431.

53 Lu, L., Zhou, Z., Zhang, Y., Wang, S., & Zhang, Y. (2007). Reinforcement of styrene–butadiene–styrene tri-block copolymer by multi-walled carbon nanotubes via melt mixing. Carbon, 45(13), 2621-2627. http://dx.doi.org/10.1016/j.carbon.2007.08.025.

54 Kaseem, M., Hamad, K., & Ko, Y. G. (2016). Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review. European Polymer Journal, 79, 36-62. http://dx.doi.org/10.1016/j.eurpolymj.2016.04.011.

55 Albuerne, J., Fierro, A. B., Abetz, C., Fierro, D., & Abetz, V. (2011). Block copolymer nanocomposites based on multiwall carbon nanotubes: effect of the functionalization of multiwall carbon nanotubes on the morphology of the block copolymer. Advanced Engineering Materials, 13(8), 803-810. http://dx.doi.org/10.1002/adem.201000291.

56 Inukai, S., Niihara, K., Noguchi, T., Ueki, H., Magario, A., Yamada, E., Inagaki, S., & Endo, M. (2011). Preparation and properties of multiwall carbon nanotubes/ polystyrene-block-polybutadiene-block-polystyrene composites. Industrial & Engineering Chemistry Research, 50(13), 8016-8022. http://dx.doi.org/10.1021/ie102380t.

6085bdfaa9539541cd5157b3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections