Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Silver nanoparticles incorporated PVC films: evaluation of structural, thermal, dielectric and catalytic properties

Shimoga, Ganesh; Shin, Eun-Jae; Kim, Sang-Youn

Downloads: 0
Views: 37


In this work, silver nanoparticle – polyvinylchloride (SNC-PVC) composites were synthesized by loading 2.5% to 10.0% silver ions to PVC using simple solution casting technique. Material properties including dielectric, thermal stability were discussed in some detail. Incorporation of silver nanoparticles (SNPs) in the PVC matrix was confirmed by UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and Field Emission Scanning Electron Microscopy (FE-SEM). FE-SEM confirms the shape of the SNPs are roughly spherical with average size of the SNPs in the range of 60 - 80 nm. The thermal degradation studies were analysed via sensitive graphical Broido’s method using Thermogravimetric analysis (TGA). The resulting SNC-PVC films, especially with 10% silver loading showed improved catalytic performance during the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of aqueous sodium borohydride with apparent rate constant 1.956 × 10-3 sec-1 at ambient temperature.


dielectric; heterogeneous catalysis; polyvinylchloride; silver nanocomposites; thermal analysis.


1 Dzhardimalieva, G. I., & Uflyand, I. E. (2018). Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. Journal of Polymer Research25(12), 255. http://dx.doi.org/10.1007/s10965-018-1646-8

2 Hussain, F., Hojjati, M., Okamoto, M., & Gorga, R. E. (2006). Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. Journal of Composite Materials40(17), 1511-1575. http://dx.doi.org/10.1177/0021998306067321

3 Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J. M., Miesbauer, O., Bianchin, A., Hankin, S., Bölz, U., Pérez, G., Jesdinszki, M., Lindner, M., Scheuerer, Z., Castelló, S., & Schmid, M. (2017). Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials (Basel, Switzerland)7(4), 74. http://dx.doi.org/10.3390/nano7040074. PMid:28362331. 

4 Vaia, R. A., & Wagner, H. D. (2004). Framework for nanocomposites. Materials Today7(11), 32-37. http://dx.doi.org/10.1016/S1369-7021(04)00506-1

5 Kumar, S. K., Benicewicz, B. C., Vaia, R. A., & Winey, K. I. (2017). 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules50(3), 714-731. http://dx.doi.org/10.1021/acs.macromol.6b02330

6 Malekzad, H., Zangabad, P. S., Mohammadi, H., Sadroddini, M., Jafari, Z., Mahlooji, N., Abbaspour, S., Gholami, S., Ghanbarpoor, M., Pashazadeh, R., Beyzavi, A., Karimi, M., & Hamblin, M. R. (2018). Noble metal nanostructures in optical biosensors: Basics, and their introduction to anti-doping detection. Trends in Analytical Chemistry100, 116-135. http://dx.doi.org/10.1016/j.trac.2017.12.006. PMid:29731530. 

7 Liang, H., Wei, H., Pan, D., & Xu, H. (2015). Chemically synthesized noble metal nanostructures for plasmonics. De Gruyter4(3), 289-302. http://dx.doi.org/10.1515/ntrev-2014-0026

8 Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology9, 1050-1074. http://dx.doi.org/10.3762/bjnano.9.98. PMid:29719757. 

9 Conde, J., Doria, G., & Baptista, P. (2012). Noble metal nanoparticles applications in cancer. Journal of Drug Delivery2012, 751075. http://dx.doi.org/10.1155/2012/751075. PMid:22007307. 

10 West, J. L., & Halas, N. J. (2000). Applications of nanotechnology to biotechnology: commentary. Current Opinion in Biotechnology11(2), 215-217. http://dx.doi.org/10.1016/S0958-1669(00)00082-3. PMid:10753774. 

11 Zeng, S., Baillargeat, D., Ho, H.-P., & Yong, K.-T. (2014). Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chemical Society Reviews43(10), 3426-3452. http://dx.doi.org/10.1039/c3cs60479a. PMid:24549396. 

12 Safari, J., Najafabadi, A. E., Zarnegar, Z., & Masoule, S. F. (2016). Catalytic performance in 4-nitrophenol reduction by Ag nanoparticles stabilized on biodegradable amphiphilic copolymers. Green Chemistry Letters and Reviews9(1), 20-26. http://dx.doi.org/10.1080/17518253.2015.1134680

13 Alshehri, S. M., Almuqati, T., Almuqati, N., Al-Farraj, E., Alhokbany, N., & Ahamad, T. (2016). Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol. Carbohydrate Polymers151, 135-143. http://dx.doi.org/10.1016/j.carbpol.2016.05.018. PMid:27474552.

14 Chen, R., & Whitmore, P. M. (2014). Silver nanoparticle films as hydrogen sulfide gas sensors with applications in art conservation. In A. S. Harper-Leatherman, & C. M. Solbrig (Eds.), The science and function of nanomaterials: from synthesis to application (ACS Symposium Series; no. 1183; chap. 6; pp. 107-120). http://dx.doi.org/10.1021/bk-2014-1183.ch006

15 Huff, C., Long, J. M., Aboulatta, A., Heyman, A., & Abdel-Fattah, T. M. (2017). Silver nanoparticle/multi-walled carbon nanotube composite as catalyst for hydrogen production. ECS Journal of Solid State Science and Technology : JSS6(10), M115-M118. http://dx.doi.org/10.1149/2.0051710jss

16 Guerra, F. D., Attia, M. F., Whitehead, D. C., & Alexis, F. (2018). Nanotechnology for environmental remediation: materials and applications. Molecules (Basel, Switzerland)23(7), 1760. http://dx.doi.org/10.3390/molecules23071760. PMid:30021974. 

17 Khin, M. M., Nair, A. S., Babu, V. J., Murugan, R., & Ramakrishna, S. (2012). A review on nanomaterials for environmental remediation. Energy & Environmental Science5(8), 8075-8109. http://dx.doi.org/10.1039/c2ee21818f

18 Martins, J. D. N., Freire, E., & Hemadipour, H. (2009). Applications and market of PVC for piping industry. Polímeros: Ciência e Tecnologia19(1), 58-62. http://dx.doi.org/10.1590/S0104-14282009000100014

19 Liu, J., Su, Y., Peng, J., Zhao, X., Zhang, Y., Dong, Y., & Jiang, Z. (2012). Preparation and performance of antifouling PVC/CPVC blend ultrafiltration membranes. Industrial & Engineering Chemistry Research51(24), 8308-8314. http://dx.doi.org/10.1021/ie300878f

20 Bockhorn, H., Hornung, A., Hornung, U., & Jakobstroer, P. (1998). New mechanistic aspects ofthe dehydrochlorination of PVC - application of dehydrochlorination to plastic mixtures and electronic scrap. Combustion Science and Technology134(1-6), 7-30. http://dx.doi.org/10.1080/00102209808924123

21 Braga, L. R., Rangel, E. T., Suarez, P. A. Z., & Machado, F. (2018). Simple synthesis of active films based on PVC incorporated with silver nanoparticles: evaluation of the thermal, structural and antimicrobial properties. Food Packaging and Shelf Life15, 122-129. http://dx.doi.org/10.1016/j.fpsl.2017.12.005

22 Thabet, A., & Ebnalwaled, A. A. (2017). Improvement of surface energy properties of PVC nanocomposites for enhancing electrical applications. Measurement110, 78-83. http://dx.doi.org/10.1016/j.measurement.2017.06.023

23 Broido, A. (1969). A simple, sensitive graphical method of treating thermogravimetric analysis data. Journal of Polymer Science. Part A-2, Polymer Physics7(10), 1761-1773. http://dx.doi.org/10.1002/pol.1969.160071012

24 Palem, R. R., Ganesh, S. D., Saha, N., Kronek, J., & Sáha, P. (2018). ‘Green’ synthesis of silver polymer Nanocomposites of poly(2-isopropenyl-2-oxazoline-co-N vinylpyrrolidone) and its catalytic activity. Journal of Polymer Research25(7), 152. http://dx.doi.org/10.1007/s10965-018-1548-9.

25 Chang, M., Kim, T., Park, H.-W., Kang, M., Reichmanis, E., & Yoon, H. (2012). Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach. ACS Applied Materials & Interfaces4(8), 4357-4365. http://dx.doi.org/10.1021/am3009967. PMid:22860984. 

26 Kora, A. J., & Rastogi, L. (2013). Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorganic Chemistry and Applications2013, 871097. http://dx.doi.org/10.1155/2013/871097. PMid:23970844. 

27 Aouachria, K., Massardier-Nageote, V., & Belhaneche-Bensemra, N. (2014). Thermal stability and Kinetic Study of rigid and plasticized Poly(vinyl chloride)/Poly(methylmethacrylate) blends. Journal of Vinyl & Additive Technology21(2), 102-110. http://dx.doi.org/10.1002/vnl.21372

28 Van Der Ven, S., & De Wit, W. F. (1969). Thermal degradation of poly(vinyl chloride): the accelerating effect of hydrogen chloride. Die Angewandte Makromolekulare Chemie8(1), 143-152. http://dx.doi.org/10.1002/apmc.1969.050080110

29 Ganesh, S. D., Pai, V. K., Kariduraganavar, M. Y., & Jayanna, M. B. (2014). Fluorinated poly(arylene ether-1,3,4-oxadiazole)s containing a 4-bromophenyl pendant group and its phosphonated derivatives: synthesis, spectroscopic characterization, thermal and dielectric studies. Polymer-Plastics Technology and Engineering53(1), 97-105. http://dx.doi.org/10.1080/03602559.2013.843694

30 Peiris, T. A. N. (2014). Microwave-assisted processing of solid materials for sustainable energy related electronic and optoelectronic applications. Loughborough: Loughborough University. 

31 Daněk, J., Klaiber, M., Hatsagortsyan, K. Z., Keitel, C. H., Willenberg, B., Maurer, J., Mayer, B. W., Phillips, C. R., Gallmann, L., & Keller, U. (2018). Interplay between Coulomb-focusing and non-dipole effects in strong-field ionization with elliptical polarization. Journal of Physics. B, Atomic, Molecular, and Optical Physics51(11), 114001. http://dx.doi.org/10.1088/1361-6455/aaba42

32 Sidebottom, D. L., Roling, B., & Funke, K. (2000). Ionic Conduction in Solids: Comparing Conductivity and Modulus Representations With Regard to Scaling Properties. Physical Review B: Condensed Matter63(2), 024301. http://dx.doi.org/10.1103/PhysRevB.63.024301.

33 Esumi, K., Isono, R., & Yoshimura, T. (2004). Preparation of PAMAM− and PPI−Metal (Silver, Platinum, and Palladium) Nanocomposites and Their Catalytic Activities for Reduction of 4-Nitrophenol. Langmuir20(1), 237-243. http://dx.doi.org/10.1021/la035440t. PMid:15745027. 

34 Murugan, E., & Jebaranjitham, J. N. (2012). Synthesis and characterization of silver nanoparticles supported on surface-modified poly(N-vinylimidazale) as catalysts for the reduction of 4-nitrophenol. Journal of Molecular Catalysis A Chemical365, 128-135. http://dx.doi.org/10.1016/j.molcata.2012.08.021

35 Liu, Y., Zhang, Y., Lan, Q., Liu, S., Qin, Z., Chen, L., Zhao, C., Chi, Z., Xu, J., & Economy, J. (2012). High-Performance Functional Polyimides Containing Rigid Nonplanar Conjugated Triphenylethylene Moieties. Chemistry of Materials24(6), 1212-1222. http://dx.doi.org/10.1021/cm3003172

36 Geng, Q., & Du, J. (2014). Reduction of 4-nitrophenol catalyzed by silver nanoparticles supported on polymer micelles and vesicles. RSC Advances4(32), 16425-16428. http://dx.doi.org/10.1039/C4RA01866D

37 Roy, A. S., Gupta, S., Seethamraju, S., Ramamurthy, P. C., & Madras, G. (2014). Fabrication of Poly(Vinylidene Chloride-Co-Vinyl Chloride)/TiO2 Nanocomposite Films and Their Dielectric Properties. Science of Advanced Materials6(5), 946-953. http://dx.doi.org/10.1166/sam.2014.1858

5e8e129a0e8825d4661ad513 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections