Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

10-(pyren-1-yl)-10h-phenothiazine and pyrene as organic catalysts for photoinitiated ATRP of 4-vinylpyridine

Loc Tan Nguyen; Hung Quang Pham; Duc Anh Song Nguyen; Luan Thanh Nguyen; Ky Phuong Ha Huynh; Hai Le Tran; Phong Thanh Mai; Ha Tran Nguyen; Le-Thu Thi Nguyen; Thuy Thu Truong

Downloads: 0
Views: 61


The UV light-mediated metal-free polymerizations of 4-vinylpyridine (4VP) have been successfully performed by using 10-(pyren-1-yl)-10H-phenothiazine (PPTh) and pyrene as photocatalysts. The preparation of narrow polydispersity poly (4-vinyl pyridine) (P4VP) with high conversions was enabled in both protic as well as unprotic reaction media at ambient temperature. Additionally, copolymerizations of 4VP with acrylate and methacrylate monomers were also demonstrated, affording metal-free copolymer products.


organic photocatalyst, metal-free atom transfer radical polymerization, 4-vinylpyridine, pyrene


1 Chen, Y., Zhao, W., & Zhang, J. (2017). Preparation of 4-vinylpyridine (4VP) resin and its adsorption performance for heavy metal ions. RSC Advances, 7(8), 4226-4236. http://dx.doi.org/10.1039/C6RA26813G.

2 Xia, J., Zhang, X., & Matyjaszewski, K. (1999). Atom transfer radical polymerization of 4-vinylpyridine. Macromolecules, 32(10), 3531-3533. http://dx.doi.org/10.1021/ma9816968.

3 Gopinath, A., Sathiyaraj, S., & Nasar, A. S. (2017). Star poly (4-vinylpyridine) s using dendritic ATRP initiators: Synthesis, electrolyte property and performance in dye sensitized solar cell. Journal of Polymer Research, 24(8), 116. http://dx.doi.org/10.1007/s10965-017-1274-8.

4 Zhang, Z., Sèbe, G., Wang, X., & Tam, K. C. (2018). Gold nanoparticles stabilized by poly (4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts. Carbohydrate Polymers, 182, 61-68. http://dx.doi.org/10.1016/j.carbpol.2017.10.094. PMid:29279126.

5 Tanum, J., Han, U., Shin, J. W., & Hong, J. (2018). Preparation of multifunctional micelles from two different amphiphilic block copolymers. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 537, 566-571. http://dx.doi.org/10.1016/j.colsurfa.2017.10.042.

6 Luo, S., Liu, S., Xu, J., Liu, H., Zhu, Z., Jiang, M., & Wu, C. (2006). A stopped-flow kinetic study of the assembly of interpolymer complexes via hydrogen-bonding interactions. Macromolecules, 39(13), 4517-4525. http://dx.doi.org/10.1021/ma060581y.

7 Xiang, M., Jiang, M., Zhang, Y., Wu, C., & Feng, L. (1997). Intermacromolecular complexation due to specific interactions 4. The hydrogen-bonding complex of vinylphenol-containing copolymer and vinylpyridine-containing copolymer. Macromolecules, 30(8), 2313-2319. http://dx.doi.org/10.1021/ma9614611.

8 Liu, F., & Eisenberg, A. (2003). Synthesis of Poly (tert-butyl acrylate)-block-Polystyrene-block-Poly(4-vinylpyridine) by Living Anionic Polymerization. Angewandte Chemie International Edition, 42(12), 1404-1407. http://dx.doi.org/10.1002/anie.200390361. PMid:12671981.

9 Matsuno, R., Yamamoto, K., Otsuka, H., & Takahara, A. (2004). Polystyrene-and poly (3-vinylpyridine)-grafted magnetite nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization. Macromolecules, 37(6), 2203-2209. http://dx.doi.org/10.1021/ma035523g.

10 Convertine, A. J., Sumerlin, B. S., Thomas, D. B., Lowe, A. B., & McCormick, C. L. (2003). Synthesis of block copolymers of 2-and 4-vinylpyridine by RAFT polymerization. Macromolecules, 36(13), 4679-4681. http://dx.doi.org/10.1021/ma034361l.

11 Qi, Y., Perepichka, I. I., Song, Z., &Varshney, S. K. (2018). Synthesis and thermal properties of poly (vinylcyclohexane)-b-poly (4-vinylpyridine) diblock copolymers prepared via RAFT polymerization. e-Polymers, 18(2), 197-203. https://doi.org/10.1515/epoly-2017-0102

12 Yang, R., Wang, Y., Wang, X., He, W., & Pan, C. (2003). Synthesis of poly(4-vinylpyridine) and block copoly (4-vinylpyridine–b-styrene) by atom transfer radical polymerization using 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazamacrocyclotetradecane as ligan. European Polymer Journal, 39(10), 2029-2033. http://dx.doi.org/10.1016/S0014-3057(03)00070-3.

13 Corrigan, N., Jung, K., Moad, G., Hawker, C. J., Matyjaszewski, K., & Boyer, C. (2020). Reversible-Deactivation Radical Polymerization (Controlled/Living Radical Polymerization): From Discovery to Materials Design and Applications. Progress in Polymer Science, 111, 101311. http://dx.doi.org/10.1016/j.progpolymsci.2020.101311.

14 Grubbs, R. B. (2011). Nitroxide-mediated radical polymerization: limitations and versatility. Polymer Reviews (Philadelphia, Pa.), 51(2), 104-137. http://dx.doi.org/10.1080/15583724.2011.566405.

15 Hill, M. R., Carmean, R. N., & Sumerlin, B. S. (2015). Expanding the scope of RAFT polymerization: recent advances and new horizons. Macromolecules, 48(16), 5459-5469. http://dx.doi.org/10.1021/acs.macromol.5b00342.

16 Matyjaszewski, K. (2018). Advanced Materials by Atom Transfer Radical Polymerization. Advanced Materials, 30(23), 1706441. http://dx.doi.org/10.1002/adma.201706441. PMid:29582478.

17 Lou, Q., & Shipp, D. A. (2012). Recent developments in atom transfer radical polymerization (ATRP): methods to reduce metal catalyst concentrations. ChemPhysChem, 13(14), 3257-3261. http://dx.doi.org/10.1002/cphc.201200166. PMid:22539367.

18 Nguyen, T. H., Nguyen, L.-T. T., Nguyen, V. Q., Phan, L. N. T., Zhang, G., Yokozawa, T., Phung, D. T. T., & Nguyen, H. T. (2018). Synthesis of poly (3-hexylthiophene) based rod–coil conjugated block copolymers via photoinduced metal-free atom transfer radical polymerization. Polymer Chemistry, 9(18), 2484-2493. http://dx.doi.org/10.1039/C8PY00361K.

19 Corrigan, N., Shanmugam, S., Xu, J., & Boyer, C. (2016). Photocatalysis in organic and polymer synthesis. Chemical Society Reviews, 45(22), 6165-6212. http://dx.doi.org/10.1039/C6CS00185H. PMid:27819094.

20 Treat, N. J., Sprafke, H., Kramer, J. W., Clark, P. G., Barton, B. E., Read de Alaniz, J., Fors, B. P., & Hawker, C. J. (2014). Metal-free atom transfer radical polymerization. Journal of the American Chemical Society, 136(45), 16096-16101. http://dx.doi.org/10.1021/ja510389m. PMid:25360628.

21 Pan, X., Lamson, M., Yan, J., & Matyjaszewski, K. (2015). Photoinduced metal-free atom transfer radical polymerization of acrylonitrile. ACS Macro Letters, 4(2), 192-196. http://dx.doi.org/10.1021/mz500834g.

22 Theriot, J. C., Miyake, G. M., & Boyer, C. A. (2018). N,N-Diaryl Dihydrophenazines as Photoredox Catalysts for PET-RAFT and Sequential PET-RAFT/O-ATRP. ACS Macro Letters, 7(6), 662-666. http://dx.doi.org/10.1021/acsmacrolett.8b00281. PMid:30705782.

23 Pearson, R. M., Lim, C.-H., McCarthy, B. G., Musgrave, C. B., & Miyake, G. M. (2016). Organocatalyzed atom transfer radical polymerization using N-aryl phenoxazines as photoredox catalysts. Journal of the American Chemical Society, 138(35), 11399-11407. http://dx.doi.org/10.1021/jacs.6b08068. PMid:27554292.

24 Wu, K., Wang, Y., & Hwu, W. (2003). FTIR and TGA studies of poly (4-vinylpyridine-co-divinylbenzene)–Cu (II) complex. Polymer Degradation & Stability, 79(2), 195-200. http://dx.doi.org/10.1016/S0141-3910(02)00261-6.

25 Orwoll, R. A., & Chong, Y. S. (1999). Polyacrylamide. In J. E. Mark (Eds.), Polymer data handbook (pp. 247-51). United Kingdom: Oxford University Press.

609d1a85a95395126c2ccdc4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections