Design of chitosan-alginate core-shell nanoparticules loaded with anacardic acid and cardol for drug delivery
Paiva Filho, João Campos; Morais, Selene Maia de; Nogueira Sobrinho, Antonio Carlos; Cavalcante, Gessica Soares; Silva, Nilvan Alves da; Abreu, Flávia Oliveira Monteiro da Silva
Abstract
Keywords
References
1 Hamad, F. B., & Mubofu, E. B. (2015). Potential biological applications of bio-based anacardic acids and their derivatives. International Journal of Molecular Sciences, 16(4), 8569-8590. http://dx.doi.org/10.3390/ijms16048569. PMid:25894225.
2 Kubo, I., Masuoka, N., Ha, T. J., & Tsujimoto, K. (2006). Antioxidant activity of anacardic acids. Food Chemistry, 99(3), 555-562. http://dx.doi.org/10.1016/j.foodchem.2005.08.023.
3 Kamath, V., & Rajini, P. S. (2007). The efficacy of cashew nut (Anacardium occidentaleL.) skin extract as a free radical scavenger. Food Chemistry, 103(2), 428-433. http://dx.doi.org/10.1016/j.foodchem.2006.07.031.
4 Correia, S. J., David, J. P., & David, J. M. (2006). Metabolitos secundários de espécies de anacardiaceae. Quimica Nova, 29(6), 1287-1300. http://dx.doi.org/10.1590/S0100-40422006000600026.
5 Muroi, H., & Kubo, I. (1996). Antibacterial activity of anacardic acid and totarol, alone and in combination with methicillin, against methicillin-resistant Staphylococcus aureus. Journal of Applied Microbiology, 80(4), 387-394. http://dx.doi.org/10.1111/j.1365-2672.1996.tb03233.x. PMid:8849640.
6 Kubo, I., Muroi, H., & Kubo, A. (1994). Naturally occurring antiacne agents. Journal of Natural Products, 57(1), 9-17. http://dx.doi.org/10.1021/np50103a002. PMid:8158169.
7 Green, I. R., Tocoli, F. E., Lee, S. H., Nihei, K., & Kubo, I. (2008). Design and evaluation of anacardic acid derivatives as anticavity agents. European Journal of Medicinal Chemistry, 43(6), 1315-1320. http://dx.doi.org/10.1016/j.ejmech.2007.08.012. PMid:17959274.
8 Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 40(9), 1107-1121. http://dx.doi.org/10.1016/j.foodres.2007.07.004.
9 Peniche, C., & Arguelles-Monal, W. (2001). Chitosan based polyelectrolyte complexes. Macromolecular Symposia, 168(1), 103-116. http://dx.doi.org/10.1002/1521-3900(200103)168:1<103::AID-MASY103>3.0.CO;2-K.
10 Paramashivappa, R., Kumar, P. P., Vithayathil, P. J., & Rao, A. S. (2001). Novel method for isolation of major phenolic constituents from cashew (anacardium occidentaleL.) nut shell liquid. Journal of Agricultural and Food Chemistry, 49(5), 2548-2551. http://dx.doi.org/10.1021/jf001222j. PMid:11368634.
11 Abreu, F. O. M. S., Silva, N. A., Sipauba, M. S., Pires, T. F. M., Bomfim, T. A., Monteiro, O. A. C., Jr., & Forte, M. M. C. (2018). Chitosan and gum arabic nanoparticles for heavy metal adsorption. Polímeros: Ciência e Tecnologia, 28(3), 231-238. http://dx.doi.org/10.1590/0104-1428.02317.
12 Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica Drug Research, 64(3), 217-223. PMid:20524422.
13 Clinical and Laboratory Standards Institute. (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts (approved standard. Document M27. CLSI) (3rd ed., Vol. M27-A3). Wayne: Clinical and Laboratory Standards Institute.
14 Sobrinho, A. C. N., Souza, E. B., Rocha, M. F. G., Albuquerque, M. R. J. R., Bandera, P. N., Santos, H. S., Cavalcante, C. S. P., Oliveira, S. S., Aragão, P. R., Morais, S. M., & Fontenelle, R. O. S. (2016). Chemical composition, antioxidant, antifungal and hemolytic activities of essential oil frombaccharis trinervis (lam.) pers. (asteraceae). Industrial Crops and Products, 84, 108-115. http://dx.doi.org/10.1016/j.indcrop.2016.01.051.
15 Clinical and Laboratory Standards Institute. (2008). Reference method for broth dilution antifungal susceptibility testing of filamentous fungi (approved Standard. Document M38. CLSI) (2nd ed., Vol. M38-A2). Wayne: Clinical and Laboratory Standards Institute.
16 Fontenelle, R. O. S., Morais, S. M., Brito, E. H. S., Brilhante, R. S. N., Cordeiro, R. A., Nascimento, N. R. F., Kerntopf, M. R., Sidrim, J. J. C., & Rocha, M. F. G. (2008). Antifungal activity of essential oils ofCrotonspecies from the BrazilianCaatingabiome. Journal of Applied Microbiology, 104(5), 1383-1390. http://dx.doi.org/10.1111/j.1365-2672.2007.03707.x. PMid:18298533.
17 Dubey, R., Bajpai, J., & Bajpai, A. K. (2016). Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg(II) ions. Environmental Nanotechnology, Monitoring & Management, 6, 32-44. http://dx.doi.org/10.1016/j.enmm.2016.06.008.
18 Rodrigues, F. H. A., Feitosa, J. P. A., Ricardo, N. M. P. S., França, F. C. F., & Carioca, J. O. B. (2006). Antioxidant activity of cashew nut shell liquid (CNSL) derivatives on the thermal oxidation of syntheticcis-1,4-polyisoprene. Journal of the Brazilian Chemical Society, 17(2), 265-271. http://dx.doi.org/10.1590/S0103-50532006000200008.
19 Paula, H. C. B., Sombra, F. M., Cavalcante, R. F., Abreu, F. O. M. S., & de Paula, R. C. M. (2011). Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Materials Science and Engineering C, 31(2), 173-178. http://dx.doi.org/10.1016/j.msec.2010.08.013.
20 Abreu, F. O. M. S., Paula, H. C. B., Oliveira, E. F., & Paula, R. C. M. (2012). Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydrate Polymers, 89(4), 1277-1282. http://dx.doi.org/10.1016/j.carbpol.2012.04.048. PMid:24750942.
21 Fazil, M., Md, S., Haque, S., Kumar, M., Baboota, S., Sahni, J., & Ali, J. (2012). Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. European Journal of Pharmaceutical Sciences, 47(1), 6-15. http://dx.doi.org/10.1016/j.ejps.2012.04.013. PMid:22561106.
22 Ridolfi, D. M., Marcato, P. D., Justo, G. Z., Cordi, L., Machado, D., & Duran, N. (2012). Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids and Surfaces. B, Biointerfaces, 93, 36-40. http://dx.doi.org/10.1016/j.colsurfb.2011.11.051. PMid:22244299.
23 Rodrigues, F. H. A., Feitosa, J. P. A., Ricardo, N. M. P. S., França, F. C. F., & Carioca, J. O. B. (2006). Antioxidant activity of cashew nut shell liquid (CNSL) derivatives on the thermal oxidation of syntheticcis-1,4-polyisoprene. Journal of the Brazilian Chemical Society, 17(2), 265-271. http://dx.doi.org/10.1590/S0103-50532006000200008.
24 Ribeiro, V. G. P., Barreto, A. C. H., Denardin, J. C., Mele, G., Carbone, L., Mazzetto, S. E., Sousa, E. M. B., & Fechine, P. B. A. (2013). Magnetic nanoparticles coated with anacardic acid derived from cashew nut shell liquid. Journal of Materials Science, 48(22), 7875-7882. http://dx.doi.org/10.1007/s10853-013-7477-4.
25 Eldin, M. S. M., Hashem, A. E., Tamer, T. M., Omer, A. M., Yossuf, M. E., & Sabet, M. M. (2017). Development of cross linked chitosan/alginate polyelectrolyte proton exchanger membranes for fuel cell applications. International Journal of Electrochemical Science, 12, 3840-3858. http://dx.doi.org/10.20964/2017.05.45.
26 Kittur, F. S., Harish Prashanth, K. V., Udaya Sankar, K., & Tharanathan, R. N. (2002). Characterization of chitin, chitosan and their carboxymethil derivatives by differential scanning calorimetry. Carbohydrate Polymers, 49(2), 185-193. http://dx.doi.org/10.1016/S0144-8617(01)00320-4.
27 Ghadi, A., Mahjoub, S., Tabandeh, F., & Talebnia, F. (2014). Synthesis and optimization of chitosan nanoparticles: potential applications in nanomedicine and biomedical engineering. Caspian Journal of Internal Medicine, 5(3), 156-161. PMid:25202443.
28 Lertsutthiwong, P., Rojsitthisak, P., & Nimmannit, U. (2009). Preparation of turmeric oil-loaded chitosan-alginate biopolymeric nanocapsules. Materials Science and Engineering C, 29(3), 856-860. http://dx.doi.org/10.1016/j.msec.2008.08.004.
29 Parmar, A., & Sharma, S. (2010). Engineering design and mechanistic mathematical models: standpoint on cutting edge drug delivery. Trends in Analytical Chemistry, 100, 15-35. http://dx.doi.org/10.1016/j.trac.2017.12.008.
30 Varelas, C. G., Dixon, D. G., & Steiner, C. A. (1995). Zero-order release from biphasic polymer hydrogles. Journal of Controlled Release, 34(3), 185-192. http://dx.doi.org/10.1016/0168-3659(94)00085-9.
31 Noppakundilograt, S., Piboon, P., Graisuwan, W., Nuisin, R., & Kiatkamjornwong, S. (2015). Encapsulation eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release. Carbohydrate Polymers, 131, 23-3. http://dx.doi.org/10.1016/j.carbpol.2015.05.054. PMid:26256156.
32 Asare-Addo, K., Levina, M., Rajabi-Siahboomi, A. R., & Nokhodchi, A. (2010). Study of dissolution hydrodynamic conditions versus drug release from hypromellose matrices: the influence of agitation sequence. Colloids and Surfaces. B, Biointerfaces, 81(2), 452-460. http://dx.doi.org/10.1016/j.colsurfb.2010.07.040. PMid:20729043.
33 Wang, J., Wu, W., & Lin, Z. (2008). Kinetics and thermodynamics of the water sorption of 2-hydroxyethyl methacrylate/styrene copolymer hydrogels. Journal of Applied Polymer Science, 109(5), 3018-3023. http://dx.doi.org/10.1002/app.28403.
34 Oliveira, E. F., Paula, H. C. B., & Paula, R. C. M. (2014). Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids and Surfaces. B, Biointerfaces, 113(1), 146-151. http://dx.doi.org/10.1016/j.colsurfb.2013.08.038. PMid:24077112.
35 Shoaib, M. H., Tazeen, J., Merchant, H. A., & Yousuf, R. I. (2006). Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pakistan Journal of Pharmaceutical Sciences, 19(2), 119-124. PMid:16751122.
36 Bouchara, J. P., Mignon, B., & Chaturvedi, V. (2017). Dermatophytes and dermatophytoses: A thematic overview of state of the art, and the directions for future research and developments. Mycopathologia, 182(1-2), 1-4. http://dx.doi.org/10.1007/s11046-017-0114-z. PMid:28138872.
37 Parasa, L. S., Tumati, S. R., Kumar, L. C. A., Chigurupati, S. P., & Rao, G. S. (2011). In vitro-antimicrobial activity of cashew (Anacardium occidentale, L.) nuts shell liquid against methicillin resistant Stephylococcus aureus (MRSA) clinical isolates. International Journal of Pharmacy and Pharmaceutical Sciences, 3(4), 436-440. Retrieved in 2019, April 1, from https://innovareacademics.in/journal/ijpps/Vol3Issue4/2724.pdf
38 Kozubek, A., & Tyman, J. H. P. (1999). Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chemical Reviews, 99(1), 1-26. http://dx.doi.org/10.1021/cr970464o. PMid:11848979.