Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.08118
Polímeros: Ciência e Tecnologia
Original Article

Design of chitosan-alginate core-shell nanoparticules loaded with anacardic acid and cardol for drug delivery

Paiva Filho, João Campos; Morais, Selene Maia de; Nogueira Sobrinho, Antonio Carlos; Cavalcante, Gessica Soares; Silva, Nilvan Alves da; Abreu, Flávia Oliveira Monteiro da Silva

Downloads: 1
Views: 33

Abstract

Anacardic Acid (AA) and Cardol (CD) are the main constituents of the cashew nut shell liquid, which presented several biological activities. In this study, a 23 factorial experimental design was employed in order to evaluate the influence of the reaction conditions in the nanoencapsulation of AA and CD using Chitosan (CH), Alginate (ALG) and Arabic Gum matrices. The nanoparticles (NPs) with higher stability and encapsulation efficiency were those with ALG as an outer coating and with lower content of surfactant. The NPs presented nanometric size with 90% of the distribution ranging from 70 to 250 nm. The in vitro kinetics revealed that CH-ALG/AA and CH-ALG/CD NPs followed zero-order kinetics model, showing a significantly slow release rate, with values of 33% and 63%, respectively, after 240h. Particularly, CH-ALG/CD NPs presented higher inhibitory capacity for all strains of dermatophytes due to their release rate, with promising results for antimicrobial control.

 

Keywords

anacardic acid, cardol, drug delivery, chitosan, nanomaterials

References

1 Hamad, F. B., & Mubofu, E. B. (2015). Potential biological applications of bio-based anacardic acids and their derivatives. International Journal of Molecular Sciences16(4), 8569-8590. http://dx.doi.org/10.3390/ijms16048569. PMid:25894225. 

2 Kubo, I., Masuoka, N., Ha, T. J., & Tsujimoto, K. (2006). Antioxidant activity of anacardic acids. Food Chemistry99(3), 555-562. http://dx.doi.org/10.1016/j.foodchem.2005.08.023

3 Kamath, V., & Rajini, P. S. (2007). The efficacy of cashew nut (Anacardium occidentaleL.) skin extract as a free radical scavenger. Food Chemistry103(2), 428-433. http://dx.doi.org/10.1016/j.foodchem.2006.07.031.

4 Correia, S. J., David, J. P., & David, J. M. (2006). Metabolitos secundários de espécies de anacardiaceae. Quimica Nova29(6), 1287-1300. http://dx.doi.org/10.1590/S0100-40422006000600026

5 Muroi, H., & Kubo, I. (1996). Antibacterial activity of anacardic acid and totarol, alone and in combination with methicillin, against methicillin-resistant Staphylococcus aureus. Journal of Applied Microbiology80(4), 387-394. http://dx.doi.org/10.1111/j.1365-2672.1996.tb03233.x. PMid:8849640. 

6 Kubo, I., Muroi, H., & Kubo, A. (1994). Naturally occurring antiacne agents. Journal of Natural Products57(1), 9-17. http://dx.doi.org/10.1021/np50103a002. PMid:8158169. 

7 Green, I. R., Tocoli, F. E., Lee, S. H., Nihei, K., & Kubo, I. (2008). Design and evaluation of anacardic acid derivatives as anticavity agents. European Journal of Medicinal Chemistry43(6), 1315-1320. http://dx.doi.org/10.1016/j.ejmech.2007.08.012. PMid:17959274. 

8 Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International40(9), 1107-1121. http://dx.doi.org/10.1016/j.foodres.2007.07.004

9 Peniche, C., & Arguelles-Monal, W. (2001). Chitosan based polyelectrolyte complexes. Macromolecular Symposia168(1), 103-116. http://dx.doi.org/10.1002/1521-3900(200103)168:1<103::AID-MASY103>3.0.CO;2-K

10 Paramashivappa, R., Kumar, P. P., Vithayathil, P. J., & Rao, A. S. (2001). Novel method for isolation of major phenolic constituents from cashew (anacardium occidentaleL.) nut shell liquid. Journal of Agricultural and Food Chemistry49(5), 2548-2551. http://dx.doi.org/10.1021/jf001222j. PMid:11368634. 

11 Abreu, F. O. M. S., Silva, N. A., Sipauba, M. S., Pires, T. F. M., Bomfim, T. A., Monteiro, O. A. C., Jr., & Forte, M. M. C. (2018). Chitosan and gum arabic nanoparticles for heavy metal adsorption. Polímeros: Ciência e Tecnologia28(3), 231-238. http://dx.doi.org/10.1590/0104-1428.02317

12 Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica Drug Research64(3), 217-223. PMid:20524422. 

13 Clinical and Laboratory Standards Institute. (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts (approved standard. Document M27. CLSI) (3rd ed., Vol. M27-A3). Wayne: Clinical and Laboratory Standards Institute. 

14 Sobrinho, A. C. N., Souza, E. B., Rocha, M. F. G., Albuquerque, M. R. J. R., Bandera, P. N., Santos, H. S., Cavalcante, C. S. P., Oliveira, S. S., Aragão, P. R., Morais, S. M., & Fontenelle, R. O. S. (2016). Chemical composition, antioxidant, antifungal and hemolytic activities of essential oil frombaccharis trinervis (lam.) pers. (asteraceae). Industrial Crops and Products84, 108-115. http://dx.doi.org/10.1016/j.indcrop.2016.01.051.

15 Clinical and Laboratory Standards Institute. (2008). Reference method for broth dilution antifungal susceptibility testing of filamentous fungi (approved Standard. Document M38. CLSI) (2nd ed., Vol. M38-A2). Wayne: Clinical and Laboratory Standards Institute. 

16 Fontenelle, R. O. S., Morais, S. M., Brito, E. H. S., Brilhante, R. S. N., Cordeiro, R. A., Nascimento, N. R. F., Kerntopf, M. R., Sidrim, J. J. C., & Rocha, M. F. G. (2008). Antifungal activity of essential oils ofCrotonspecies from the BrazilianCaatingabiome. Journal of Applied Microbiology104(5), 1383-1390. http://dx.doi.org/10.1111/j.1365-2672.2007.03707.x. PMid:18298533. 

17 Dubey, R., Bajpai, J., & Bajpai, A. K. (2016). Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg(II) ions. Environmental Nanotechnology, Monitoring & Management6, 32-44. http://dx.doi.org/10.1016/j.enmm.2016.06.008

18 Rodrigues, F. H. A., Feitosa, J. P. A., Ricardo, N. M. P. S., França, F. C. F., & Carioca, J. O. B. (2006). Antioxidant activity of cashew nut shell liquid (CNSL) derivatives on the thermal oxidation of syntheticcis-1,4-polyisoprene. Journal of the Brazilian Chemical Society17(2), 265-271. http://dx.doi.org/10.1590/S0103-50532006000200008

19 Paula, H. C. B., Sombra, F. M., Cavalcante, R. F., Abreu, F. O. M. S., & de Paula, R. C. M. (2011). Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Materials Science and Engineering C31(2), 173-178. http://dx.doi.org/10.1016/j.msec.2010.08.013

20 Abreu, F. O. M. S., Paula, H. C. B., Oliveira, E. F., & Paula, R. C. M. (2012). Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydrate Polymers89(4), 1277-1282. http://dx.doi.org/10.1016/j.carbpol.2012.04.048. PMid:24750942. 

21 Fazil, M., Md, S., Haque, S., Kumar, M., Baboota, S., Sahni, J., & Ali, J. (2012). Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. European Journal of Pharmaceutical Sciences47(1), 6-15. http://dx.doi.org/10.1016/j.ejps.2012.04.013. PMid:22561106. 

22 Ridolfi, D. M., Marcato, P. D., Justo, G. Z., Cordi, L., Machado, D., & Duran, N. (2012). Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids and Surfaces. B, Biointerfaces93, 36-40. http://dx.doi.org/10.1016/j.colsurfb.2011.11.051. PMid:22244299.

23 Rodrigues, F. H. A., Feitosa, J. P. A., Ricardo, N. M. P. S., França, F. C. F., & Carioca, J. O. B. (2006). Antioxidant activity of cashew nut shell liquid (CNSL) derivatives on the thermal oxidation of syntheticcis-1,4-polyisoprene. Journal of the Brazilian Chemical Society17(2), 265-271. http://dx.doi.org/10.1590/S0103-50532006000200008

24 Ribeiro, V. G. P., Barreto, A. C. H., Denardin, J. C., Mele, G., Carbone, L., Mazzetto, S. E., Sousa, E. M. B., & Fechine, P. B. A. (2013). Magnetic nanoparticles coated with anacardic acid derived from cashew nut shell liquid. Journal of Materials Science48(22), 7875-7882. http://dx.doi.org/10.1007/s10853-013-7477-4

25 Eldin, M. S. M., Hashem, A. E., Tamer, T. M., Omer, A. M., Yossuf, M. E., & Sabet, M. M. (2017). Development of cross linked chitosan/alginate polyelectrolyte proton exchanger membranes for fuel cell applications. International Journal of Electrochemical Science12, 3840-3858. http://dx.doi.org/10.20964/2017.05.45

26 Kittur, F. S., Harish Prashanth, K. V., Udaya Sankar, K., & Tharanathan, R. N. (2002). Characterization of chitin, chitosan and their carboxymethil derivatives by differential scanning calorimetry. Carbohydrate Polymers49(2), 185-193. http://dx.doi.org/10.1016/S0144-8617(01)00320-4

27 Ghadi, A., Mahjoub, S., Tabandeh, F., & Talebnia, F. (2014). Synthesis and optimization of chitosan nanoparticles: potential applications in nanomedicine and biomedical engineering. Caspian Journal of Internal Medicine5(3), 156-161. PMid:25202443. 

28 Lertsutthiwong, P., Rojsitthisak, P., & Nimmannit, U. (2009). Preparation of turmeric oil-loaded chitosan-alginate biopolymeric nanocapsules. Materials Science and Engineering C29(3), 856-860. http://dx.doi.org/10.1016/j.msec.2008.08.004

29 Parmar, A., & Sharma, S. (2010). Engineering design and mechanistic mathematical models: standpoint on cutting edge drug delivery. Trends in Analytical Chemistry100, 15-35. http://dx.doi.org/10.1016/j.trac.2017.12.008

30 Varelas, C. G., Dixon, D. G., & Steiner, C. A. (1995). Zero-order release from biphasic polymer hydrogles. Journal of Controlled Release34(3), 185-192. http://dx.doi.org/10.1016/0168-3659(94)00085-9

31 Noppakundilograt, S., Piboon, P., Graisuwan, W., Nuisin, R., & Kiatkamjornwong, S. (2015). Encapsulation eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release. Carbohydrate Polymers131, 23-3. http://dx.doi.org/10.1016/j.carbpol.2015.05.054. PMid:26256156. 

32 Asare-Addo, K., Levina, M., Rajabi-Siahboomi, A. R., & Nokhodchi, A. (2010). Study of dissolution hydrodynamic conditions versus drug release from hypromellose matrices: the influence of agitation sequence. Colloids and Surfaces. B, Biointerfaces81(2), 452-460. http://dx.doi.org/10.1016/j.colsurfb.2010.07.040. PMid:20729043. 

33 Wang, J., Wu, W., & Lin, Z. (2008). Kinetics and thermodynamics of the water sorption of 2-hydroxyethyl methacrylate/styrene copolymer hydrogels. Journal of Applied Polymer Science109(5), 3018-3023. http://dx.doi.org/10.1002/app.28403

34 Oliveira, E. F., Paula, H. C. B., & Paula, R. C. M. (2014). Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids and Surfaces. B, Biointerfaces113(1), 146-151. http://dx.doi.org/10.1016/j.colsurfb.2013.08.038. PMid:24077112. 

35 Shoaib, M. H., Tazeen, J., Merchant, H. A., & Yousuf, R. I. (2006). Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pakistan Journal of Pharmaceutical Sciences19(2), 119-124. PMid:16751122. 

36 Bouchara, J. P., Mignon, B., & Chaturvedi, V. (2017). Dermatophytes and dermatophytoses: A thematic overview of state of the art, and the directions for future research and developments. Mycopathologia182(1-2), 1-4. http://dx.doi.org/10.1007/s11046-017-0114-z. PMid:28138872. 

37 Parasa, L. S., Tumati, S. R., Kumar, L. C. A., Chigurupati, S. P., & Rao, G. S. (2011). In vitro-antimicrobial activity of cashew (Anacardium occidentale, L.) nuts shell liquid against methicillin resistant Stephylococcus aureus (MRSA) clinical isolates. International Journal of Pharmacy and Pharmaceutical Sciences3(4), 436-440. Retrieved in 2019, April 1, from https://innovareacademics.in/journal/ijpps/Vol3Issue4/2724.pdf 

38 Kozubek, A., & Tyman, J. H. P. (1999). Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chemical Reviews99(1), 1-26. http://dx.doi.org/10.1021/cr970464o. PMid:11848979. 

5eb2e8c20e88252612d76ee0 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections