Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Review Article

Antibacterial activity of polypyrrole-based nanocomposites: a mini-review

Fernando Antonio Gomes da Silva Júnior; Simone Araújo Vieira; Sônia de Avila Botton; Mateus Matiuzzi da Costa; Helinando Pequeno de Oliveira

Downloads: 0
Views: 448


The development of polypyrrole-based nanocomposites as alternative antibacterial agents represents a promising strategy to be applied against the prevailing multi-resistant bacteria. Herein, it is reported the most recent development of antibacterial materials based on the combination of polypyrrole and different fillers (metal nanoparticles, carbon nanotubes, and polysaccharides) and strategies to improve their action (such as light and electrical stimulus). The synergistic interaction of electrostatic forces provided by charged polypyrrole combined with the permeation of nanoparticles through the cell wall favors the leakage of cytoplasmic components and reinforces the antibacterial activity of the resulting material, observed in all-organic composites of polypyrrole and chitosan that reached superior performance against Escherichia coli (108 CFU) or metal-polymer composites (polypyrrole-palladium) with an outstanding performance against different types of bacteria. The development of binary and ternary composites is explored to potentialize the antibacterial synergy of components.


antibacterial, carbon nanotubes, nanocomposites, polypyrrole, silver nanoparticles


1 Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128-145. http://dx.doi.org/10.1016/j.jconrel.2011.07.002. PMid:21763369.

2 Munguia, J., & Nizet, V. (2017). Pharmacological Targeting of the Host–Pathogen Interaction: Alternatives to classical antibiotics to combat drug-resistant superbugs. Trends in Pharmacological Sciences, 38(5), 473-488. http://dx.doi.org/10.1016/j.tips.2017.02.003. PMid:28283200.

3 Ventola, C. L. (2015). Antibiotic Resistance Crisis Part 1: causes and Threats. P&T, 40(4), 277-283. PMid:25859123.

4 Bansal, R., Jain, A., Goyal, M., Singh, T., Sood, H., & Malviya, H. (2019). Antibiotic abuse during endodontic treatment: A contributing factor to antibiotic resistance. Journal of Family Medicine and Primary Care, 8(11), 3518-3524. http://dx.doi.org/10.4103/jfmpc.jfmpc_768_19. PMid:31803645.

5 Andersson, D. I. (2003). Persistence of antibiotic resistant bacteria. Current Opinion in Microbiology, 6(5), 452-456. http://dx.doi.org/10.1016/j.mib.2003.09.001. PMid:14572536.

6 Abbott, A. (2005). Medics braced for fresh superbug. Nature, 436(7052), 758. http://dx.doi.org/10.1038/436758a. PMid:16094326.

7 Ferber, D. (2010). From pigs to people: the emergence of a new superbug. Science, 329(5995), 1010-1011. http://dx.doi.org/10.1126/science.329.5995.1010. PMid:20798295.

8 Bhardwaj, K., Vinothkumar, K., & Rajpara, N. (2013). Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Patents on Anti-infective Drug Discovery, 8(1), 68-83. http://dx.doi.org/10.2174/1574891X11308010012. PMid:23394143.

9 Hemeg, H. A. (2017). Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicine, 2017(12), 8211-8225. http://dx.doi.org/10.2147/IJN.S132163. PMid:29184409.

10 Lam, S. J., O’Brien-Simpson, N. M., Pantarat, N., Sulistio, A., Wong, E. H. H., Chen, Y. Y., Lenzo, J. C., Holden, J. A., Blencowe, A., Reynolds, E. C., & Qiao, G. G. (2016). Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nature Microbiology, 12(11), 16162. http://dx.doi.org/10.1038/nmicrobiol.2016.162. PMid:27617798.

11 Maráková, N., Humpolíček, P., Kašpárková, V., Capáková, Z., Martinková, L., Bober, P., Trchová, M., & Stejskal, J. (2017). Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Applied Surface Science, 396, 169-176. http://dx.doi.org/10.1016/j.apsusc.2016.11.024.

12 Gizdavic-Nikolaidis, M. R., Bennett, J. R., Swift, S., Easteal, A. J., & Ambrose, M. (2011). Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomaterialia, 7(12), 4204-4209. http://dx.doi.org/10.1016/j.actbio.2011.07.018. PMid:21827876.

13 Sánchez-Jiménez, M., Estrany, F., Borràs, N., Maiti, B., Díaz Díaz, D., Del Valle, L. J., & Alemán, C. (2019). Antimicrobial activity of poly(3,4-ethylenedioxythiophene) n-doped with a pyridinium-containing polyelectrolyte. Soft Matter, 15(38), 7695-7703. http://dx.doi.org/10.1039/C9SM01491H. PMid:31502620.

14 Mohammadi, B., Pirsa, S., & Alizadeh, M. (2019). Preparing chitosan–polyaniline nanocomposite film and examining its mechanical, electrical, and antimicrobial properties. Polymers & Polymer Composites, 27(8), 507-517. http://dx.doi.org/10.1177/0967391119851439.

15 De Silva, C. C., Israni, N., Zanwar, A., Jagtap, A., Leophairatana, P., Koberstein, J. T., & Modak, S. M. (2019). “Smart” polymer enhances the efficacy of topical antimicrobial agents. Burns, 45(6), 1418-1429. http://dx.doi.org/10.1016/j.burns.2019.04.013. PMid:31230802.

16 Ramos, A. R., Tapia, A. K. G., Piñol, C. M. N., Lantican, N. B., del Mundo, M. L. F., Manalo, R. D., & Herrera, M. U. (2019). Morphological, electrical and antimicrobial properties of polyaniline-coated paper prepared via a two-pot layer-by-layer technique. Materials Chemistry and Physics, 238, 121972. http://dx.doi.org/10.1016/j.matchemphys.2019.121972.

17 Da Silva, F. A. G. Jr, Queiroz, J. C., Macedo, E. R., Fernandes, A. W. C., Freire, N. B., Da Costa, M. M., & De Oliveira, H. P. (2016). Antibacterial behavior of polypyrrole: the influence of morphology and additives incorporation. Materials Science and Engineering C, 62, 317-322. http://dx.doi.org/10.1016/j.msec.2016.01.067. PMid:26952429.

18 Lima, R. M. A. P., Alcaraz-Espinoza, J. J., Da Silva, F. A. G. Jr, & De Oliveira, H. P. (2018). Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes. ACS Applied Materials & Interfaces, 10(16), 13783-13795. http://dx.doi.org/10.1021/acsami.8b04695. PMid:29620858.

19 da Silva, F. A. G. Jr, Alcaraz-Espinoza, J. J., da Costa, M. M., & de Oliveira, H. P. (2017). Synthesis and characterization of highly conductive polypyrrole-coated electrospun fibers as antibacterial agents. Composites. Part B, Engineering, 129, 143-151. http://dx.doi.org/10.1016/j.compositesb.2017.07.080.

20 Valiūnienė, A., Rekertaitė, A. I., Ramanavičienė, A., Mikoliūnaitė, L., & Ramanavičius, A. (2017). Fast Fourier transformation electrochemical impedance spectroscopy for the investigation of inactivation of glucose biosensor based on graphite electrode modified by Prussian blue, polypyrrole and glucose oxidase. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 532, 165-171. http://dx.doi.org/10.1016/j.colsurfa.2017.05.048.

21 Huang, Y., Li, H., Wang, Z., Zhu, M., Pei, Z., Xue, Q., Huang, Y., & Zhi, C. (2016). Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy, 22, 422-438. http://dx.doi.org/10.1016/j.nanoen.2016.02.047.

22 Sakhraoui, H. E. E. Y., Mazouz, Z., Attia, G., Fourati, N., Zerrouki, C., Maouche, N., Othmane, A., Yaakoubi, N., Kalfat, R., Madani, A., & Nessark, B. (2019). Design of L-Cysteine and acrylic acid imprinted Polypyrrole sensors for picomolar detection of lead ions in simple and real media. IEEE Sensors Journal, 20(8), 4147-4155. http://dx.doi.org/10.1109/JSEN.2019.2961984.

23 Zhu, Q., Li, E., Liu, X., Song, W., Li, Y., Wang, X., & Liu, C. (2020). Epoxy coating with in-situ synthesis of polypyrrole functionalized graphene oxide for enhanced anticorrosive performance. Progress in Organic Coatings, 140, 105488. http://dx.doi.org/10.1016/j.porgcoat.2019.105488.

24 Aigbe, U. O., Das, R., Ho, W. H., Srinivasu, V., & Maity, A. (2018). A novel method for removal of Cr(VI) using polypyrrole magnetic nanocomposite in the presence of unsteady magnetic fields. Separation and Purification Technology, 194, 377-387. http://dx.doi.org/10.1016/j.seppur.2017.11.057.

25 Szczęśniak, B., Osuchowski, Ł., Choma, J., & Jaroniec, M. (2018). Highly porous carbons obtained by activation of polypyrrole/reduced graphene oxide as effective adsorbents for CO2, H2 and C6H6. Journal of Porous Materials, 25(2), 621-627. http://dx.doi.org/10.1007/s10934-017-0475-1.

26 Rascón-Leon, S., Castillo-Ortega, M. M., Santos-Sauceda, I., Munive, G. T., Rodriguez-Felix, D. E., Castillo-Castro, T., Encinas, J. C., Valenzuela-García, J. L., Quiroz-Castillo, J. M., García-Gaitan, B., Herrera-Franco, P. J., Alvarez-Sanchez, J., Ramírez, J. Z., & Quiroz-Castillo, L. S. (2018). Selective adsorption of gold and silver in bromine solutions by acetate cellulose composite membranes coated with polyaniline or polypyrrole. Polymer Bulletin, 75(7), 3241-3265. http://dx.doi.org/10.1007/s00289-017-2206-9.

27 Sun, X., Lv, X., Li, X., Yuan, X., Li, L., & Gu, G. (2018). Fe3O4@SiO2 nanoparticles wrapped with polypyrrole (PPy) aerogel: A highly performance material as excellent electromagnetic absorber. Materials Letters, 221, 93-96. http://dx.doi.org/10.1016/j.matlet.2018.03.079.

28 Zhou, W., Lu, L., Chen, D., Wang, Z., Zhai, J., Wang, R., Tan, G., Mao, J., Yu, P., & Ning, C. (2018). Construction of high surface potential polypyrrole nanorods with enhanced antibacterial properties. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 6(19), 3128-3135. http://dx.doi.org/10.1039/C7TB03085A. PMid:32254347.

29 Wan, C., & Li, J. (2016). Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: in-situ synthesis, characterization and antibacterial activity. Carbohydrate Polymers, 146, 362-367. http://dx.doi.org/10.1016/j.carbpol.2016.03.081. PMid:27112885.

30 Bideau, B., Bras, J., Saini, S., Daneault, C., & Loranger, E. (2016). Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite. Materials Science and Engineering C, 69, 977-984. http://dx.doi.org/10.1016/j.msec.2016.08.005. PMid:27612793.

31 Mandu, M. A. L. G. M. R., Costa, L. D. C., Tiosso, R. B., Grasso, R. P., & Calderari, M. R. D. C. M. (2019). Evaluation of antimicrobial action of silver composite microspheres based on styrene-divinylbenzene copolymer. Polímeros, 29(4), e2019052. http://dx.doi.org/10.1590/0104-1428.00219.

32 Silva, C. F., Oliveira, F. S. M., Caetano, V. F., Vinhas, G. M., & Cardoso, S. A. (2018). Orange essential oil as antimicrobial additives in poly(vinyl chloride) films. Polímeros, 28(4), 332-338. http://dx.doi.org/10.1590/0104-1428.16216.

33 Majeed, Z., Mushtaq, M., Ajab, Z., Guan, Q., Mahnashi, M. H., Alqahtani, Y. S., & Ahmad, B. (2020). Rosin maleic anhydride adduct antibacterial activity against methicillin-resistant Staphylococcus aureus. Polímeros, 30(2), e2020022. http://dx.doi.org/10.1590/0104-1428.03820.

34 Costa, L. C., Mandu, M. A. L. G. M. R., Santa Maria, L. C., & Marques, M. R. C. (2015). Resinas poliméricas reticuladas com ação biocida: atual estado da arte. Polímeros, 25(4), 414-423. http://dx.doi.org/10.1590/0104-14281739.

35 Raza, Z. A., & Anwar, F. (2018). Fabrication of poly(lactic acid) incorporated chitosan nanocomposites for enhanced functional polyester fabric. Polímeros, 28(2), 120-124. http://dx.doi.org/10.1590/0104-1428.11216.

36 Varesano, A., Vineis, C., Aluigi, A., Rombaldoni, F., Tonetti, C., & Mazzuchetti, G. (2013). Antibacterial efficacy of polypyrrole in textile applications. Fibers and Polymers, 14(1), 36-43. http://dx.doi.org/10.1007/s12221-013-0036-4.

37 Seshadri, D. T., & Bhat, N. V. (2005). Synthesis and properties of cotton fabrics modified with polypyrrole. Journal of Fiber Science and Technology, 61(4), 103-108. http://dx.doi.org/10.2115/fiber.61.103.

38 Sanchez Ramirez, D. O., Varesano, A., Carletto, R. A., Vineis, C., Perelshtein, I., Natan, M., Perkas, N., Banin, E., & Gedanken, A. (2019). Antibacterial properties of polypyrrole-treated fabrics by ultrasound deposition. Materials Science and Engineering C, 102, 164-170. http://dx.doi.org/10.1016/j.msec.2019.04.016. PMid:31146987.

39 Bin-Jumah, M., Gilani, S. J., Jahangir, M. A., Zafar, A., Alshehri, S., Yasir, M., Kala, C., Taleuzzaman, M., & Imam, S. S. (2020). Clarithromycin-loaded ocular chitosan nanoparticle: Formulation, optimization, characterization, ocular irritation, and antimicrobial activity. International Journal of Nanomedicine, 15, 7861-7875. http://dx.doi.org/10.2147/IJN.S269004. PMid:33116505.

40 Maruthapandi, M., Saravanan, A., Luong, J. H. T., & Gedanken, A. (2020). Antimicrobial properties of polyaniline and polypyrrole decorated with zinc-doped copper oxide microparticles. Polymers, 12(6), 1286. http://dx.doi.org/10.3390/polym12061286. PMid:32512800.

41 Sayyah, S. M., Mohamed, F., & Shaban, M. (2014). Antibacterial activity of nano fabricated polypyrrole by cyclic voltammetry. IOSR Journal of Applied Chemistry, 7(2), 11-15. http://dx.doi.org/10.9790/5736-07211115.

42 Hasantabar, V., Lakouraj, M. M., Nazarzadeh Zare, E., & Mohseni, M. (2015). Innovative magnetic tri-layered nanocomposites based on polyxanthone triazole, polypyrrole and iron oxide: Synthesis, characterization and investigation of the biological activities. RSC Advances, 5(86), 70186-70196. http://dx.doi.org/10.1039/C5RA07309J.

43 Ahmad, N., Sultana, S., Faisal, S. M., Ahmed, A., Sabir, S., & Khan, M. Z. (2019). Zinc oxide-decorated polypyrrole/chitosan bionanocomposites with enhanced photocatalytic, antibacterial and anticancer performance. RSC Advances, 9(70), 41135-41150. http://dx.doi.org/10.1039/C9RA06493A.

44 Salabat, A., Mirhoseini, F., Mahdieh, M., & Saydi, H. (2015). A novel nanotube-shaped polypyrrole-Pd composite prepared using reverse microemulsion polymerization and its evaluation as an antibacterial agent. New Journal of Chemistry, 39(5), 4109-4114. http://dx.doi.org/10.1039/C5NJ00175G.

45 Zang, L., Qiu, J., Yang, C., & Sakai, E. (2016). Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization. Scientific Reports, 6(1), 20470. http://dx.doi.org/10.1038/srep20470. PMid:26839126.

46 Huxtar, Y., Wang, Y. B., Abibulla, M., Abdukeyum, A., Muhtar, N., & Su, Z. (2016). Preparation of composite coatings of spherical hydroxyapatite and silver nanoparticles on biomedical titanium using pulse electrochemical deposition method controlled by pyrrole polymerization. Gaofenzi Xuebao, (4), 528-537. http://dx.doi.org/10.11777/j.issn1000.3304.2016.15285.

47 Das, R., Giri, S., King Abia, A. L., Dhonge, B., & Maity, A. (2017). Removal of Noble Metal Ions (Ag+) by Mercapto Group-Containing Polypyrrole Matrix and Reusability of Its Waste Material in Environmental Applications. ACS Sustainable Chemistry & Engineering, 5(3), 2711-2724. http://dx.doi.org/10.1021/acssuschemeng.6b03008.

48 Shang, M., Wang, W., Zou, H., & Ren, G. (2016). Coating Fe3O4 spheres with polypyrrole-Pd composites and their application as recyclable catalysts. Synthetic Metals, 221, 142-148. http://dx.doi.org/10.1016/j.synthmet.2016.08.015.

49 Hasik, M., Drelinkiewicz, A., & Malata, G. (1999). Studies of polypyrrole - Pd2+ systems. Synthetic Metals, 102(1–3), 1306. http://dx.doi.org/10.1016/S0379-6779(98)00996-5.

50 Ding, K., Jia, H., Wei, S., & Guo, Z. (2011). Electrocatalysis of sandwich-structured Pd/polypyrrole/Pd composites toward formic acid oxidation. Industrial & Engineering Chemistry Research, 50(11), 7077-7082. http://dx.doi.org/10.1021/ie102392n.

51 Murugesan, B., Pandiyan, N., Arumugam, M., Sonamuthu, J., Samayanan, S., Yurong, C., Yao, J., & Mahalingam, S. (2020). Fabrication of palladium nanoparticles anchored polypyrrole functionalized reduced graphene oxide nanocomposite for antibiofilm associated orthopedic tissue engineering. Applied Surface Science, 510, 145403. http://dx.doi.org/10.1016/j.apsusc.2020.145403.

52 Adams, C. P., Walker, K. A., Obare, S. O., & Docherty, K. M. (2014). Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS One, 9(1), e85981. http://dx.doi.org/10.1371/journal.pone.0085981. PMid:24465824.

53 Baker, C., Pradhan, A., Pakstis, L., Pochan, D. J., & Shah, S. I. (2005). Synthesis and antibacterial properties of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 5(2), 244-249. http://dx.doi.org/10.1166/jnn.2005.034. PMid:15853142.

54 Martínez-Castañón, G. A., Niño-Martínez, N., Martínez-Gutierrez, F., Martínez-Mendoza, J. R., & Ruiz, F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 10(8), 1343-1348. http://dx.doi.org/10.1007/s11051-008-9428-6.

55 Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., & Dash, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18(22), 225103. http://dx.doi.org/10.1088/0957-4484/18/22/225103.

56 Liu, F., Yuan, Y., Li, L., Shang, S., Yu, X., Zhang, Q., Jiang, S., & Wu, Y. (2015). Synthesis of polypyrrole nanocomposites decorated with silver nanoparticles with electrocatalysis and antibacterial property. Composites. Part B, Engineering, 69, 232-236. http://dx.doi.org/10.1016/j.compositesb.2014.09.030.

57 Liu, J., Wang, J., Yu, X., Li, L., & Shang, S. (2015). One-pot synthesis of polypyrrole/AgCl composite nanotubes and their antibacterial properties. Micro & Nano Letters, 10(1), 50-53. http://dx.doi.org/10.1049/mnl.2014.0435.

58 Upadhyay, J., Kumar, A., Gogoi, B., & Buragohain, A. K. (2015). Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process. Materials Science and Engineering C, 54, 8-13. http://dx.doi.org/10.1016/j.msec.2015.04.027. PMid:26046261.

59 Saad, A., Cabet, E., Lilienbaum, A., Hamadi, S., Abderrabba, M., & Chehimi, M. M. (2017). Polypyrrole/Ag/mesoporous silica nanocomposite particles: design by photopolymerization in aqueous medium and antibacterial activity. Journal of the Taiwan Institute of Chemical Engineers, 80, 1022-1030. http://dx.doi.org/10.1016/j.jtice.2017.09.024.

60 Chung, Y. C., & Chen, C. Y. (2008). Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technology, 99(8), 2806-2814. http://dx.doi.org/10.1016/j.biortech.2007.06.044. PMid:17697776.

61 Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339(16), 2693-2700. http://dx.doi.org/10.1016/j.carres.2004.09.007. PMid:15519328.

62 Goy, R. C., De Britto, D., & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros, 19(3), 241-247. http://dx.doi.org/10.1590/S0104-14282009000300013.

63 Cabuk, M., Alan, Y., Yavuz, M., & Unal, H. I. (2014). Synthesis, characterization and antimicrobial activity of biodegradable conducting polypyrrole-graft-chitosan copolymer. Applied Surface Science, 318, 168-175. http://dx.doi.org/10.1016/j.apsusc.2014.02.180

64 Talebi, A., Labbaf, S., & Karimzadeh, F. (2019). A conductive film of chitosan-polycaprolcatone-polypyrrole with potential in heart patch application. Polymer Testing, 75, 254-261. http://dx.doi.org/10.1016/j.polymertesting.2019.02.029.

65 Kumar, A. M., Suresh, B., Das, S., Obot, I. B., Adesina, A. Y., & Ramakrishna, S. (2017). Promising bio-composites of polypyrrole and chitosan: surface protective and in vitro biocompatibility performance on 316L SS implants. Carbohydrate Polymers, 173, 121-130. http://dx.doi.org/10.1016/j.carbpol.2017.05.083. PMid:28732850.

66 Soleimani, M., Ghorbani, M., & Salahi, S. (2016). Antibacterial Activity of Polypyrrole-Chitosan Nanocomposite: mechanism of Action. International Journal of Nanoscience and Nanotechnology, 12(3), 191-197.

67 Ahmed, F., Santos, C. M., Vergara, R. A. M. V., Tria, M. C. R., Advincula, R., & Rodrigues, D. F. (2012). Antimicrobial applications of electroactive PVK-SWNT nanocomposites. Environmental Science & Technology, 46(3), 1804-1810. http://dx.doi.org/10.1021/es202374e. PMid:22091864.

68 Liu, X., Wang, M., Zhang, S., & Pan, B. (2013). Application potential of carbon nanotubes in water treatment: A review. Journal of Environmental Sciences (China), 25(7), 1263-1280. http://dx.doi.org/10.1016/S1001-0742(12)60161-2. PMid:24218837.

69 Tondro, G. H., Behzadpour, N., Keykhaee, Z., Akbari, N., & Sattarahmady, N. (2019). Carbon@polypyrrole nanotubes as a photosensitizer in laser phototherapy of Pseudomonas aeruginosa. Colloids and Surfaces. B, Biointerfaces, 180, 481-486. http://dx.doi.org/10.1016/j.colsurfb.2019.05.020. PMid:31102852.

70 Robertson, J., Gizdavic-Nikolaidis, M., Nieuwoudt, M. K., & Swift, S. (2018). The antimicrobial action of polyaniline involves production of oxidative stress while functionalisation of polyaniline introduces additional mechanisms. PeerJ, 6:1-36. https://doi.org/10.7717/peerj.5135

71 Ghaffari-Moghaddam, M., & Eslahi, H. (2014). Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arabian Journal of Chemistry, 7(5), 846-855. http://dx.doi.org/10.1016/j.arabjc.2013.11.011.

72 Kucekova, Z., Humpolicek, P., Kasparkova, V., Perecko, T., Lehocký, M., Hauerlandová, I., Sáha, P., & Stejskal, J. (2014). Colloidal polyaniline dispersions: antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloids and Surfaces. B, Biointerfaces, 116, 411-417. http://dx.doi.org/10.1016/j.colsurfb.2014.01.027. PMid:24534430.

73 Ebrahimiasl, S., Zakaria, A., Kassim, A., & Basri, S. N. (2015). Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: Synthesis, characterization, antioxidant, and antibacterial activities. International Journal of Nanomedicine, 10, 217-227. http://dx.doi.org/10.2147/IJN.S69740. PMid:25565815.

74 Kumar, R., Oves, M., Almeelbi, T., Al-Makishah, N. H., & Barakat, M. A. (2017). Hybrid chitosan/polyaniline-polypyrrole biomaterial for enhanced adsorption and antimicrobial activity. Journal of Colloid and Interface Science, 490, 488-496. http://dx.doi.org/10.1016/j.jcis.2016.11.082. PMid:27918986.

75 Salam, M. A., Obaid, A. Y., El-Shishtawy, R. M., & Mohamed, S. A. (2017). Synthesis of nanocomposites of polypyrrole/carbon nanotubes/silver nano particles and their application in water disinfection. RSC Advances, 7(27), 16878-16884. http://dx.doi.org/10.1039/C7RA01033H.

76 Stejskal, J., & Trchová, M. (2018). Conducting polypyrrole nanotubes: a review. Chemical Papers, 72(7), 1563-1595. http://dx.doi.org/10.1007/s11696-018-0394-x.

77 Balint, R., Cassidy, N. J., & Cartmell, S. H. (2014). Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomaterialia, 10(6), 2341-2353. http://dx.doi.org/10.1016/j.actbio.2014.02.015. PMid:24556448.

78 Liao, Z., Fang, X., Li, J., Li, X., Zhang, W., Sun, X., Shen, J., Han, W., Zhao, S., & Wang, L. (2018). Incorporating organic nanospheres into the polyamide layer to prepare thin film composite membrane with enhanced biocidal activity and chlorine resistance. Separation and Purification Technology, 207, 222-230. http://dx.doi.org/10.1016/j.seppur.2018.06.057.

79 Wu, C. S. (2011). Polyester and multiwalled carbon nanotube composites: Characterization, electrical conductivity and antibacterial activity. Polymer International, 60(5), 807-815. http://dx.doi.org/10.1002/pi.3022.

6037bb62a953955bb30c39f2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections