Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Mercerization effect on the properties of LDPE/PHB composites reinforced with castor cake

Marisa Cristina Guimarães Rocha; Nancy Isabel Alvarez de Acevedo; Carlos Ivan Ribeiro de Oliveira; Maira Cunha Sanches; Natália Nogueira Coelho

Downloads: 2
Views: 352


The aim of this work was to investigate the effects of mercerization on the structure of castor oil cake (CC) and on the tensile properties of LDPE/PHB/CC composites. To achieve this goal, the fibers were treated with NaOH solutions (5 and 10 wt%). Characterization techniques such as: scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to investigate the structure of modified fibers. The composites were processed in a Haake mixer. Tensile tests of the composites were performed according to ASTM D638 standard. The analyzes revealed that mercerization promoted a partial conversion of cellulose I into cellulose II. Mercerization performed with 5% NaOH solution improved the tensile properties of the LDPE/PHB/CC composites, which were superior to those obtained with the 10% NaOH solution. This result suggests that the higher concentration of NaOH compromises the integrity of the fibers, deteriorating the mechanical properties.


mercerization, castor oil cake, composites, fiber characterization, mechanical properties


1 Nayan, N. H. M., Razak, S. I. A., Rahman, W. A. W., & Majid, R. A. (2013). Effects of mercerization on the properties of paper produced from Malaysian pineapple leaf fiber. IACSIT International Journal of Engineering and Technology, 13(4), 1-6.

2 Abdullah, N. M., & Ahmad, I. (2012). Effect of chemical treatment on mechanical and water-sorption properties coconut fiber-unsaturated polyester from recycled PET. International Scholarly Research Notices, 2012, 1-8. http://dx.doi.org/10.5402/2012/134683.

3 Väisänen, T., Haapala, A., Lappalainen, R., & Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management, 54, 62-73. http://dx.doi.org/10.1016/j.wasman.2016.04.037. PMid:27184447.

4 Satyanarayana, K. G., Arizaga, G. G. C., & Wypych, F. (2009). Biodegradable composites based on lignocellulosic fibers – An overview. Progress in Polymer Science, 34(9), 982-1021. http://dx.doi.org/10.1016/j.progpolymsci.2008.12.002.

5 Peças, P., Carvalho, H., Salman, H., & Leite, M. (2018). Natural fiber composites and their applications: A review. Journal of Composite Science, 2(4), 66-85. http://dx.doi.org/10.3390/jcs2040066.

6 Rohan, T., Tushar, B., & Mahesha, G. T. (2018). Review of natural fiber composites. IOP Conference Series. Materials Science and Engineering, 314, 1-8. http://dx.doi.org/10.1088/1757-899X/314/1/012020.

7 Hashim, M. Y., Roslan, M. N., Amin, A. M., Zaidi, A. M. A., & Ariffin, S. (2012). Mercerization treatment parameter effect on natural fiber reinforced polymer matrix composite: A brief review. World Academy of Science, Engineering and Technology, 6(8), 1378-1384. http://dx.doi.org/10.5281/zenodo.1059511.

8 Paukszta, D., & Borysiak, S. (2013). The influence of processing and the polymorphism of lignocellulosic fillers on the structure and properties of composite materials-A review. Materials, 6(7), 2747-2767. http://dx.doi.org/10.3390/ma6072747. PMid:28811406.

9 Albinante, S. R., Pacheco, E. B., & Visconte, L. L. (2013). Revisão dos tratamentos químicos da fibra natural para misturas com poliolefinas. Quimica Nova, 36(1), 114-122. http://dx.doi.org/10.1590/S0100-40422013000100021.

10 Liu, X. Y., & Dai, G. C. (2007). Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites. Express Polymer Letters, 1(5), 299-307. http://dx.doi.org/10.3144/expresspolymlett.2007.43.

11 Mokaloba, N., & Batane, R. (2014). The effects of mercerization and acetylation treatments on the properties of sisal fiber and its interfacial adhesion characteristics on polypropylene. International Journal of Engineering Science and Technology, 6(4), 83-97. http://dx.doi.org/10.4314/ijest.v6i4.9.

12 Kabir, M. M., Wang, H., Aravinthan, T., Cardona, F., & Lau, K. T. (2011). Effects of natural fibre surface on composite properties: a review. In 1st International Postgraduate Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing - eddBE2011 (pp. 94-99). Brisbane, Australia: USQ ePrints.

13 Liu, Y., & Hu, H. (2008). X-ray diffraction study of bamboo fibers treated with NaOH. Fibers and Polymers, 9(6), 735-739. http://dx.doi.org/10.1007/s12221-008-0115-0.

14 Jaramillo-Quiceno, N., Vélez, R. J. M., Cadena, Ch. E. M., Restrepo-Osorio, A., & Santa, J. F. (2018). Improvement of mechanical properties of pineapple leaf fibers by mercerization process. Fibers and Polymers, 19(12), 2604-2611. http://dx.doi.org/10.1007/s12221-018-8522-3.

15 Xia, Y., Xian, G., & Li, H. (2014). Enhancement of tensile properties of flax filaments through mercerization under sustained tension. Polymers & Polymer Composites, 22(2), 203-208. http://dx.doi.org/10.1177/096739111402200218.

16 Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites – A review. Polymer Engineering and Science, 49(7), 1253-1272. http://dx.doi.org/10.1002/pen.21328.

17 Chandrasekar, M., Ishak, M. R., Sapuan, S. M., Leman, Z., & Jawaid, M. (2017). A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plastics, Rubber and Composites, 46(3), 119-136. http://dx.doi.org/10.1080/14658011.2017.1298550.

18 Baldoni, A. B., Carvalho, M. H., Souza, N. L., Nobrega, M. B. M., Milani, M., & Aragão, F. J. L. (2011). Variability of ricin content in mature seeds of castor bean. Pesquisa Agropecuária Brasileira, 46(7), 776-779. http://dx.doi.org/10.1590/S0100-204X2011000700015.

19 Melo, W. C., Santos, A. S., Santa Anna, L. M. M., & Pereira, N. Jr (2008). Acid and enzymatic hydrolysis of the residue from castor bean (Ricinus communis L.) oil extraction for ethanol production: detoxification and biodiesel process integration. Journal of the Brazilian Chemical Society, 19(3), 418-425. http://dx.doi.org/10.1590/S0103-50532008000300008.

20 Patel, V. R., Dumancas, G. G., Kasi Viswanath, L. C., Maples, R., & Subong, B. J. (2016). Castor oil: Properties, uses, and optimization of processing parameters in commercial production. Lipid Insights, 9, 1-12. http://dx.doi.org/10.4137/LPI.S40233. PMid:27656091.

21 Keera, S. T., El Sabagh, S. M., & Taman, A. R. (2018). Castor oil biodiesel production and optimization. Egyptian Journal of Petroleum, 27(4), 979-984. http://dx.doi.org/10.1016/j.ejpe.2018.02.007.

22 Treinyte, J., Grazuleviciene, V., & Ostrauskaite, J. (2014). Biodegradable polymer composites with nitrogen- and phosphorous- containing waste materials as the fillers. Ecological Chemistry and Engineering. S, 21(3), 515-528. http://dx.doi.org/10.2478/eces-2014-0038.

23 Nwigbo, S. C., Okafor, T. C., & Atuanya, C. U. (2013). The mechanical properties of castor seed shell-polyester matrix composites. Research Journal of Applied Sciences, Engineering and Technology, 5(11), 3159-3164. http://dx.doi.org/10.19026/rjaset.5.4551.

24 Satyanarayana, K. G., & Prasad, V. S. (2016). Starch-based “Green” composites. In S. Kalia (Ed.), Biodegradable green composites (pp. 199-298). New Jersey: John Wiley & Sons Inc. http://dx.doi.org/10.1002/9781118911068.ch8.

25 Stork, R. R., & Rocha, M. C G. G. G. (2010). Composites of low- density polyethylene and castor presscake. Polymer-Plastics Technology and Engineering, 49(13), 1352-1355. http://dx.doi.org/10.1080/03602559.2010.496699.

26 Burlein, G. A., & Rocha, M. C. G. (2014). LDPE/PHB blends filled with castor oil pressed cake. Materials Research, 17(1), 203-212. http://dx.doi.org/10.1590/S1516-14392013005000166.

27 Assmann, V. (2009). Obtenção de compósitos termomoldados a partir da torta de mamona plastificada com glicerol, derivado do processo de transesterificação de óleos e gorduras (Master’s Thesis). Universidade Federal do Paraná, Curitiba.

28 Burlein, G. A., & Rocha, M. C. G. (2014). Mechanical and morphological properties of LDPE/PHB blends filled with castor oil pressed cake. Materials Research, 17(1), 97-105. http://dx.doi.org/10.1590/S1516-14392013005000196.

29 Ribeiro, C. M., Castilho, L. R., Freire, D. M., Dias, M. L., Machado, A. C., Cunha, L. M., & Nazareth, N. J. (2010). BR Patent PI080410-6. Brazil. Base de Dados PATENTSCOPE®.

30 American Society for Testing and Materials – ASTM. (2014). ASTM D638-14: Standard test method for tensile properties of plastics. West Conshohocken, PA: ASTM International. Retrieved in 2020, August 11, from www.astm.org

31 Oh, S. Y., Yoo, D. I., Shin, Y., Kim, H. C., Kim, H. Y., Chung, Y. S., Park, W. H., & Youk, J. H. (2005). Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research, 340(15), 2376-2391. http://dx.doi.org/10.1016/j.carres.2005.08.007 PMid:16153620.

32 Kondo, T. (1997). The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose, 4(4), 281-292. http://dx.doi.org/10.1023/A:1018448109214.

33 Das, M., & Chakraborty, D. (2006). Influence of alkali treatment on the fine structure and morphology of bamboo fibers. Journal of Applied Polymer Science, 102(5), 5050-5056. http://dx.doi.org/10.1002/app.25105.

34 Yue, Y., Zhou, C., French, A. D., Xia, G., Han, G., Wang, Q., & Wu, Q. (2012). Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose, 19(4), 1173-1187. http://dx.doi.org/10.1007/s10570-012-9714-4.

35 Lee, C. M., Mittal, A., Barnette, A. L., Kafle, K., Park, Y. B., Shin, H., Johnson, D. K., Park, S., & Kim, S. H (2013). Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose, 20(3), 991-100. http://dx.doi.org/10.1007/s10570-013-9917-3.

36 Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnology for Biofuels, 3(1), 1-10. http://dx.doi.org/10.1186/1754-6834-3-10. PMid:20497524.

37 French, A. D. (2014). Idealized powder diffraction patterns for cellulose polymorphs. Cellulose (London, England), 21(2), 885-896. http://dx.doi.org/10.1007/s10570-013-0030-4.

38 Kafle, K., Greeson, K., Lee, C., & Kim, S. H. (2014). Cellulose polymorphs and physical properties of cotton fabrics processed with commercial textile mills for mercerization and liquid ammonia treatments. Textile Research Journal, 84(16), 1692-1699. http://dx.doi.org/10.1177/0040517514527379.

39 El Halal, Sh. L., Colussi, R., Deon, V. G., Pinto, V. Z., Villanova, F. A., Carreño, F. L. V., Dias, R. G., & Zavareze, R. (2015). Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, 133, 644-653. http://dx.doi.org/10.1016/j.carbpol.2015.07.024. PMid:26344323.

40 Oliveira, J. P., Bruni, G. P., Lima, K. O., El Halal, S. L. M., da Rosa, G. S., Dias, A. R. G., & Zavareze, E. da R. (2017). Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chemistry, 221, 153-160. http://dx.doi.org/10.1016/j.foodchem.2016.10.048. PMid:27979125.

41 Carrillo-Varela, I., Pereira, M., & Mendonça, R. T. (2018). Determination of polymorphic changes in cellulose from Eucalyptus spp. fibres after alkalization. Cellulose, 25, 6831-6845. http://dx.doi.org/10.1007/s10570-018-2060-4.

42 Mondragon, G., Fernandes, S., Retegi, A., Peña, C., Algar, I., Eceiza, A., & Arbelaiz, A. (2014). A common strategy to extracting cellulose nanoentities from different plants. Industrial Crops and Products, 55, 140-148. http://dx.doi.org/10.1016/j.indcrop.2014.02.014.

43 Yang, D., Zhong, L.-X., Yuan, T.-Q., Peng, X.-W., & Sun, R.-C. (2013). Studies on the structural characterization of lignin, hemocellulose and cellulose fractioned by ionic liquid followed by alkaline extraction from bamboo. Industrial Crops and Products, 43, 141-149. http://dx.doi.org/10.1016/j.indcrop.2012.07.024.

44 Guimarães, J. L., Trindade Cursino, A. C., Ketzer Saul, C., Sierrakowski, M. R., Ramos, L. P., & Satyanarayana, K. (2016). Evaluation of castor oil cake starch and recovered glycerol and development of “Green” composites based on those with plant fibers. Materials, 9(2), 76. http://dx.doi.org/10.3390/ma9020076. PMid:28787878.

45 Lengowski, E. C. (2012). Caracterização e predição da cristalinidade de celulose através de espectroscopia no infravermelho e análise multivariada (Master’s Thesis). Universidade Federal do Paraná, Curitiba.

46 de Carvalho Jr, A. B. (2010). Preparação e caracterização de quartzo particulado e discos quartzo-teflon para dosimetria termoluminiscente das radiações ionizantes (Doctoral Dissertation). Universidade Federal de Pernambuco, Recife.

47 Sánchez-Cantú, M., Ortiz-Moreno, L., Ramos-Cassellis, M. E., Marín-Castro, M., & De la Cerna-Hernández, C. (2018). Solid-state treatment of castor cake employing the enzymatic cocktail produced from pleurotus djamor fungi. Applied Biochemistry and Biotechnology, 185(2), 434-449. http://dx.doi.org/10.1007/s12010-017-2656-4. PMid:29178055.

48 Goldberg, R. N., Schliesser, J., Mittal, A., Decker, S. R., Santos, A. F. L. O. M., Freitas, V. L. S., Urbas, A., Lang, B. E., Heiss, C., Ribeiro da Silva, M. D. M. C., Woodfield, B. F., Katahira, R., Wang, W., & Johnson, D. K. (2015). A thermodynamic investigation of the cellulose allomorphs: Cellulose (am), cellulose Iβ (cr), cellulose II (cr) and cellulose III (cr). The Journal of Chemical Thermodynamics, 81, 184-226. http://dx.doi.org/10.1016/j.jct.2014.09.006.

49 Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Composites. Part B, Engineering, 43(7), 2883-2892. http://dx.doi.org/10.1016/j.compositesb.2012.04.053.

50 Ferreira, D. P., Cruz, J., & Fangueiro, R. (2019). Surface modification of natural fibers in biopolymer composites. In G. Koronis & A. Silva (Eds.), Woodhead Publishing series in Composites Science and Enginering, Green composites for automotive applications (pp. 3-41). Duxford, UK: Woodhead Publishing.

51 Izani, M. A., Paridah, M. T., Anwar, U. M., Nor, M. Y. M., & H’ng, P. S. (2013). Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Composites. Part B, Engineering, 45(1), 1251-1257. http://dx.doi.org/10.1016/j.compositesb.2012.07.027.

52 Wang, C., Wang, J., Yu, C., Wu, B., Wang, Y., & Li, W. (2014). A novel method for the determination of seady-torque of polymer melts by HAAKE MiniLab. Polymer Testing, 33, 138-144. http://dx.doi.org/10.1016/j.polymertesting.2013.12.001.

53 Santi C.R., Hage Jr, E., Correa, C. A. & Vlachopoulos, J. (2009). Torque viscometry of molten polymers and composites. Applied Rheology, 19(1), 13148-1-13148-7.

54 Pang, A. L., Bakar, A. A., & Ismail, H. (2015). Effects of Kenaf loading on processability and properties of linera low density polyethylene/poly(vinyl alcohol)/Kenaf composites. BioResources, 10(4), 7302-7314. http://dx.doi.org/10.15376/biores.10.4.7302-7314.

55 Burlein, G. A. (2010). Avaliação das propriedades de polietileno de baixa densidade (PEBD), poli(3-hidroxibutirato) (PHB) e de suas misturas com torta de mamona (Master’s Thesis). Universidade do Estado do Rio de Janeiro, Brazil.

56 Rigotti, D., Dorigato, A., & Pegoretti, A. (2020). Thermo-Mechanical Behavior and Hydrolitic degradation of Linear Low Density Polyethylene/Poly (3-Hydroxybutirate) Blends. Frontier in Materials, 7(31), 1-11. http://dx.doi.org/10.3389/mats2020.0031.

57 Karami, S., Nazockdast, H., Ahmadi, Z., Rabolt, J. F., Noda, I., & Chase, D. B. (2019). Microstructure effects on the rheology of nanoclay-filled PHB/LDPE blends. Polymer Composites, 40(10), 4125-4134. http://dx.doi.org/10.1002/pc.25273.

6037bc33a953955c46302a03 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections