Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

The incorporation of untreated and alkali-treated banana fiber in SEBS composites

Letícia Cuebas; José Armando Bertolini Neto; Renata Tâmara Pereira de Barros; Alexandre Oka Thomaz Cordeiro; Derval dos Santos Rosa; Cristiane Reis Martins

Downloads: 0
Views: 24


In this work, banana fiber was used as reinforcement for the preparation of a thermoplastic elastomer composite (TPE). Few studies are exploring the natural fiber incorporation on TPEs, with no one using banana fiber. The fiber was extracted from banana pseudostem and modified with an alkaline solution. The untreated and treated banana fibers were incorporated in 2%, 5%, and 10% in SEBS. The mixture was performed in a thermokinetic mixer (K-Mixer) and plates prepared by compression molding. The composites were characterized by Scanning Electron Microscopic (SEM), tensile testing, mechanical dynamical analysis (DMA). It can be observed that the samples with untreated fibers presented a higher tensile strength, except for the incorporation of 5% of BF. Young's modulus increase as the fiber's incorporation grows, indicating greater rigidity of the composite. It was found that the chemically treated banana fiber composites, e.g., TPE/TBF5 and TPE/TBF10, shows a 15.4% and 22.2% higher elongation.



banana fiber, composite, SEBS, thermoplastic elastomer, thermokinetic-mixer


1 Parsania, P. H., Sankhavara, D. B., Chopda, J., & Patel, J. P. (2020). Preparation and physicochemical study of jute and glass composites of epoxy resin of (2E, 6E)-bis(4-hydroxybenzylidene)cyclohexanone. Polymer Bulletin, 77(6), 3111-3128. http://dx.doi.org/10.1007/s00289-019-02901-0.

2 Masłowski, M., Miedzianowska, J., & Strzelec, K. (2020). The potential application of cereal straw as a bio-filler for elastomer composites. Polymer Bulletin, 77(4), 2021-2038. http://dx.doi.org/10.1007/s00289-019-02848-2.

3 Miedzianowska, J., Masłowski, M., & Strzelec, K. (2019). Thermoplastic elastomer biocomposites filled with cereal straw fibers obtained with different processing methods: preparation and properties. Polymers, 11(4), 641. http://dx.doi.org/10.3390/polym11040641. PMid:30970584.

4 Hashim, F., Ismail, H., & Rusli, A. (2017). Comparison of properties of ethylene vinyl acetate/natural rubber/mengkuang leaf fibre (EVA/NR/MLF) and ethylene vinyl acetate/epoxidized natural rubber/mengkuang leaf fibre (EVA/ENR-50/MLF) thermoplastic elastomer composites. Polymer Testing, 61, 1-7. http://dx.doi.org/10.1016/j.polymertesting.2017.04.021.

5 Paran, S. M. R., Naderi, G., Shokoohi, S., Ebadati, J., & Dubois, C. (2019). Mechanical and thermal properties of green thermoplastic elastomer vulcanizate nanocomposites based on poly (vinyl chloride) and nitrile butadiene rubber containing organoclay and rice straw natural fibers. Journal of Polymers and the Environment, 27(9), 2017-2026. http://dx.doi.org/10.1007/s10924-019-01491-2.

6 Oladele, I. O., Ibrahim, I. O., Akinwekomi, A. D., & Talabi, S. I. (2019). Effect of mercerization on the mechanical and thermal response of hybrid bagasse fiber/CaCO 3 reinforced polypropylene composites. Polymer Testing, 76, 192-198. http://dx.doi.org/10.1016/j.polymertesting.2019.03.021.

7 Yantaboot, K., & Amornsakchai, T. (2016). Effect of mastication time on the low strain properties of short pineapple leaf fiber reinforced natural rubber composites. Polymer Testing, 57, 31-37. http://dx.doi.org/10.1016/j.polymertesting.2016.11.006.

8 Surajarusarn, B., Hajjar-Garreau, S., Schrodj, G., Mougin, K., & Amornsakchai, T. (2020). Comparative study of pineapple leaf microfiber and aramid fiber reinforced natural rubbers using dynamic mechanical analysis. Polymer Testing, 82, 106289. http://dx.doi.org/10.1016/j.polymertesting.2019.106289.

9 Bartos, A., Anggono, J., Farkas, Á. E., Kun, D., Soetaredjo, F. E., Móczó, J., Antoni, Purwaningsih, H., & Pukánszky, B. (2020). Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties. Polymer Testing, 88, 106549. http://dx.doi.org/10.1016/j.polymertesting.2020.106549.

10 Ouarhim, W., Zari, N., Bouhfid, R., & Qaiss, A. E. K. (2018). Mechanical performance of natural fibers-based thermosetting composites. In M. Jawaid, M. Thariq & N. Saba (Eds.), Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites (pp. 43–60). UK: Woodhead Publishing. Elsevier. http://dx.doi.org/10.1016/B978-0-08-102292-4.00003-5.

11 Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., & Waterhouse, G. I. N. (2016). Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites. Part A, Applied Science and Manufacturing, 90, 589-597. http://dx.doi.org/10.1016/j.compositesa.2016.08.025.

12 Oushabi, A., Sair, S., Oudrhiri Hassani, F., Abboud, Y., Tanane, O., & El Bouari, A. (2017). The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): study of the interface of DPF–Polyurethane composite. South African Journal of Chemical Engineering, 23, 116-123. http://dx.doi.org/10.1016/j.sajce.2017.04.005.

13 Ribeiro, V. F., Cardoso, E., Jr., Simões, D. N., Pittol, M., Tomacheski, D., & Santana, R. M. C. (2019). Use of copper microparticles in SEBS/PP compounds. Part 1: effects on morphology, thermal, physical, mechanical and antibacterial properties. Materials Research, 22(2), 1-8. http://dx.doi.org/10.1590/1980-5373-mr-2018-0304.

14 Simão, J. A., Marconcini, J. M., Capparelli Mattoso, L. H., & Sanadi, A. R. (2018). Effect of SEBS-MA and MAPP as coupling agent on the thermal and mechanical properties in highly filled composites of oil palm fiber / PP. Composite Interfaces, 26(8), 699-709. http://dx.doi.org/10.1080/09276440.2018.1530916.

15 Panaitescu, D. M., Fierascu, R. C., Gabor, A. R., & Nicolae, C. A. (2020). Effect of hemp fiber length on the mechanical and thermal properties of polypropylene/SEBS/hemp fiber composites. Journal of Materials Research and Technology, 9(5), 510768. http://dx.doi.org/10.1016/j.jmrt.2020.07.084.

16 Yadav, C., Saini, A., & Maji, P. K. (2018). Cellulose nanofibres as biomaterial for nano-reinforcement of poly[styrene-ethylene-co-butylene)-styrene] triblock copolymer. Cellulose (London, England), 25(1), 449-461. http://dx.doi.org/10.1007/s10570-017-1567-4.

17 Saikrasun, S., Yuakkul, D., & Amornsakchai, T. (2017). Thermo-oxidative stability and remarkable improvement in mechanical performance for styrenic-based elastomer composites contributed from silane-treated pineapple leaf. International Journal of Plastics Technology, 21(2), 252-277. http://dx.doi.org/10.1007/s12588-017-9183-6.

18 Yuakkul, D., Amornsakchai, T., & Saikrasun, S. (2016). Effect of maleated compatibilizer on anisotropic mechanical properties, thermo-oxidative stability and morphology of styrenic based thermoplastic elastomer reinforced with alkali-treated pineapple leaf fiber. International Journal of Plastics Technology, 19(2), 388-411. http://dx.doi.org/10.1007/s12588-016-9132-9.

19 Borba, P. M., Tedesco, A., & Lenz, D. M. (2014). Effect of reinforcement nanoparticles addition on mechanical properties of SBS/Curauá fiber composites. Materials Research, 17(2), 412-419. http://dx.doi.org/10.1590/S1516-14392013005000203.

20 Guo, C. G., & Wang, Q. W. (2007). Compatibilizing effect of maleic anhydride grafted styrene-ethylene- butylene-styrene (MAH-g-SEBS) on the polypropylene and wood fiber composites. Journal of Reinforced Plastics and Composites, 26(17), 1743-1752. http://dx.doi.org/10.1177/0731684407079345.

21 Yeh, S. K., Kim, K. J., & Gupta, R. K. (2013). Synergistic effect of coupling agents on polypropylene-based wood-plastic composites. Journal of Applied Polymer Science, 127(2), 1047-1053. http://dx.doi.org/10.1002/app.37775.

22 Sharma, R., & Maiti, S. N. (2015). Effects of crystallinity of polypropylene (PP) on the mechanical properties of PP/styrene-ethylene-butylene-styrene-g-maleic anhydride (SEBS-g-MA)/teak wood flour (TWF) composites. Polymer Bulletin, 72(3), 627-643. http://dx.doi.org/10.1007/s00289-014-1296-x.

23 Pappu, A., Patil, V., Jain, S., Mahindrakar, A., Haque, R., & Thakur, V. K. (2015). Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review. International Journal of Biological Macromolecules, 79, 449-458. http://dx.doi.org/10.1016/j.ijbiomac.2015.05.013. PMid:26001493.

24 Balaji, A., Sivaramakrishnan, K., Karthikeyan, B., Purushothaman, R., Swaminathan, J., Kannan, S., Udhayasankar, R., & Haja Madieen, A. (2019). Study on mechanical and morphological properties of sisal /banana/coir fiber-reinforced hybrid polymer composites. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(9), 386. http://dx.doi.org/10.1007/s40430-019-1881-x.

25 Kumari, S., Kumar, R., Rai, B., & Kumar, G. (2019). Morphology and biodegradability study of natural latex-modified polyester – banana fiber composites. Journal of Natural Fibers, 51, 1-9. http://dx.doi.org/10.1080/15440478.2019.1652131.

26 TAPPI Standards. (1997). TAPPI Standard T 204 om-97. Preparation of wood for chemical analysis. Preparation of wood for chemical analysis. Peachtree Corners, GA: TAPPI.

27 TAPPI Standards. (2006). TAPPI Standard T 222 om-02. Acid-insoluble lignin in wood and pulp. Peachtree Corners, GA: TAPPI.

28 TAPPI Standards. (1999). TAPPI Standard T 203 om-99. Alpha-, beta- and gamma-cellulose in pulp. Alpha-, beta- and gamma-cellulose in pulp. Peachtree Corners, GA: TAPPI.

29 Wise, L. E., Murphy, M. D., & Adieco, A. A. (1946). Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal, 122(2), 35-43.

30 American Society for Testing and Materials – ASTM. (2016). ASTM D412-16 - Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension. West Conshohocken: ASTM. http://dx.doi.org/10.1520/D0412-16.

31 Gonçalves, A. P. B., Miranda, C. S., Guimarães, D. H., Oliveira, J. C., Cruz, A. M. F., Silva, F. L. B. M., Luporini, S., & José, N. M. (2015). Physicochemical, mechanical and morphologic characterization of purple banana fibers. Materials Research, 18(Suppl. 2), 205-209. http://dx.doi.org/10.1590/1516-1439.366414.

32 Nery, T. B. R., & José, N. M. (2018). Study of treated and in natural banana fibers as a possible material for reinforcement in polymeric composites. Revista Virtual de Química, 10(2), 313-322. Retrieved in 2020, July 15, from http://rvq-sub.sbq.org.br/index.php/rvq/article/view/2336

33 Subramanya, R., Satyanarayana, K. G., & Shetty Pilar, B. (2017). Evaluation of Structural, Tensile and Thermal Properties of Banana Fibers. Journal of Natural Fibers, 14(4), 485-497. http://dx.doi.org/10.1080/15440478.2016.1212771.

34 Parre, A., Karthikeyan, B., Balaji, A., & Udhayasankar, R. (2019). Investigation of chemical, thermal and morphological properties of untreated and NaOH treated banana fiber. Materials Today: Proceedings, 22(3), 347-352. http://dx.doi.org/10.1016/j.matpr.2019.06.655.

35 Shah, H., Srinivasulu, B., & Shit, S. C. (2013). Influence of banana fibre chemical modification on the mechanical and morphological properties of woven banana fabric/unsaturated polyester resin composites. Polymers from Renewable Resources, 4(2), 61-84. http://dx.doi.org/10.1177/204124791300400202.

36 Sgriccia, N., Hawley, M. C., & Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composites. Part A, Applied Science and Manufacturing, 39(10), 1632-1637. http://dx.doi.org/10.1016/j.compositesa.2008.07.007.

37 Panaitescu, D. M., Vuluga, Z., Sanporean, C. G., Nicolae, C. A., Gabor, A. R., & Trusca, R. (2019). High flow polypropylene/SEBS composites reinforced with differently treated hemp fibers for injection molded parts. Composites. Part B, Engineering, 174, 107062. http://dx.doi.org/10.1016/j.compositesb.2019.107062.

38 Szabó, G., Romhányi, V., Kun, D., Renner, K., & Pukánszky, B. (2017). Competitive Interactions in Aromatic Polymer/Lignosulfonate Blends. ACS Sustainable Chemistry & Engineering, 5(1), 410-419. http://dx.doi.org/10.1021/acssuschemeng.6b01785.

39 Pannu, A. S., Singh, S., & Dhawan, V. (2020). Effect of alkaline treatment on mechanical properties of biodegradable composite (BF/PLA) rod. Materials Today: Proceedings, (In Press). http://dx.doi.org/10.1016/j.matpr.2020.02.912.

40 de Freitas, R. R. M., do Carmo, K. P., de Souza Rodrigues, J., de Lima, V. H., Osmari da Silva, J., & Botaro, V. R. (2021). Influence of alkaline treatment on sisal fibre applied as reinforcement agent in composites of corn starch and cellulose acetate matrices. Plastics, Rubber and Composites, 50(1), 9-17. http://dx.doi.org/10.1080/14658011.2020.1816119.

41 Roy, K., Debnath, S. C., Tzounis, L., Pongwisuthiruchte, A., & Potiyaraj, P. (2020). Effect of various surface treatments on the performance of jute fibers filled Natural Rubber (NR) composites. Polymers, 12(2), 369. http://dx.doi.org/10.3390/polym12020369. PMid:32046027.

42 Adeniyi, A. G., Onifade, D. V., Abdulkareem, S. A., Amosa, M. K., & Ighalo, J. O. (2020). Valorization of plantain stalk and polystyrene wastes for composite development. Journal of Polymers and the Environment, 28(10), 2644-2651. http://dx.doi.org/10.1007/s10924-020-01796-7.

43 Gassan, J., & Bledzki, A. K. (1999). Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Composites Science and Technology, 59(9), 1303-1309. http://dx.doi.org/10.1016/S0266-3538(98)00169-9.

44 Tjong, S. C., Xu, S. A., Li, R. K. Y., & Mai, Y. W. (2002). Mechanical behavior and fracture toughness evaluation of maleic anhydride compatibilized short glass fiber/SEBS/polypropylene hybrid composites. Composites Science and Technology, 62(6), 831-840. http://dx.doi.org/10.1016/S0266-3538(02)00037-4.

45 Hashemi, S. (1997). Work of fracture of PBT/PC blend: effect of specimen size, geometry, and rate of testing. Polymer Engineering and Science, 37(5), 912-921. http://dx.doi.org/10.1002/pen.11734.

6085bcf8a9539541631d8762 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections