Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Physicochemical and drug release properties of microcrystalline cellulose derived from Musa balbisiana

Martins Emeje; Marlene Ekpo; Olubunmi Olayemi; Christianah Isimi; Alak Buraghoin

Downloads: 0
Views: 290


Microcrystalline cellulose synthesized from the waste of Musa balbisiana (BMCC) was characterized to explore the possibility of application in the pharmaceutical industry especially as a drug delivery vehicle. The SEM, XRD and FTIR investigations revealed that the predominantly short, non-aggregated and irregular MCC rods were highly crystalline. The moisture sorption value for BMCC was 5.65%, while total ash was 0.39%. Flow of BMCC was poor, but the product exhibited high hydration (11.7%) and swelling (277.0%) capacities. Preliminary investigation of BMCC tablets containing ascorbic acid carried out in simulated intestinal fluid, showed a concentration dependent retardation of drug release. No cytotoxicity of BMCC was observed in the hemolytic assay. Overall, the study revealed that BMCC can be prepared from an inexpensive and abundant agricultural waste and possesses properties advantageous for application in the pharmaceutical industry and may be explored further in drug delivery research.


drug release, microcrystalline cellulose, Musa balbisiana, physicochemical characteristics


1 Ohwoavworhoa, F. O., & Adelakun, T. A. (2005). Some physical characteristics of microcrystalline cellulose obtained from raw cotton of cochlospermum planchonii. Tropical Journal of Pharmaceutical Research, 4(2), 501-507. http://dx.doi.org/10.4314/tjpr.v4i2.14626.

2 Höckerfelt, M. H., & Alderborn, G. (2014). The crystallinity of cellulose controls the physical distribution of sorbed water and the capacity to present water for chemical degradation of a solid drug. International Journal of Pharmaceutics, 477(1-2), 326-333. http://dx.doi.org/10.1016/j.ijpharm.2014.10.034. PMid:25455777.

3 Kranz, H., Jürgens, K., Pinier, M., & Siepmann, J. (2009). Drug release from MCC- and carrageenan-based pellets: experiment and theory. European Journal of Pharmaceutics and Biopharmaceutics, 73(2), 302-309. http://dx.doi.org/10.1016/j.ejpb.2009.05.007. PMid:19465119.

4 Luukkonen, P., Schæfer, T., Podczeck, F., Newton, M., Hellén, L., & Yliruusi, J. (2001). Characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a powder rheometer. European Journal of Pharmaceutical Sciences, 13(2), 143-149. http://dx.doi.org/10.1016/S0928-0987(00)00197-4. PMid:11297898.

5 Mallick, S., Pradhan, S. K., & Mohapatra, R. (2013). Effects of microcrystalline cellulose based comilled powder on the compression and dissolution of ibuprofen. International Journal of Biological Macromolecules, 60(0), 148-155. http://dx.doi.org/10.1016/j.ijbiomac.2013.05.021. PMid:23732329.

6 Ohwoavworhua, F. O., & Adelakun, T. A. (2010). Non-wood fibre production of microcrystalline cellulose from Sorghum caudatum: characterization and tableting properties. Indian Journal of Pharmaceutical Sciences, 72(3), 295-301. http://dx.doi.org/10.4103/0250-474X.70473. PMid:21188036.

7 Ohwoavworhua, F. O., & Adelakun, T. A. (2005). Phosphoric acid-mediated depolymerization and decrystallization of α-cellulose obtained from corn cob: preparation of low crystallinity cellulose and some physicochemical properties. Tropical Journal of Pharmaceutical Research, 4(2), 509-516. http://dx.doi.org/10.4314/tjpr.v4i2.14627.

8 Ohwoavworhua, F., Adelakun, T., & Okhamafe, A. (2009). Processing pharmaceutical grade microcrystalline cellulose from groundnut husk: extraction methods and characterization. International Journal of Green Pharmacy, 3(2), 97-104. http://dx.doi.org/10.4103/0973-8258.54895.

9 Kalita, R. D., Nath, Y., Ochubiojo, M. E., & Buragohain, A. K. (2013). Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids and Surfaces. B, Biointerfaces, 108(0), 85-89. http://dx.doi.org/10.1016/j.colsurfb.2013.02.016. PMid:23524080.

10 Thoorens, G., Krier, F., Leclercq, B., Carlin, B., & Evrard, B. (2014). Microcrystalline cellulose, a direct compression binder in a quality by design environment: a review. International Journal of Pharmaceutics, 473(1-2), 64-72. http://dx.doi.org/10.1016/j.ijpharm.2014.06.055. PMid:24993785.

11 Carlos-Amaya, F., Osorio-Diaz, P., Agama-Acevedo, E., Yee-Madeira, H., & Bello-Pérez, L. A. (2011). Physicochemical and digestibility properties of double-modified banana (Musa paradisiaca L.) starches. Journal of Agricultural and Food Chemistry, 59(4), 1376-1382. http://dx.doi.org/10.1021/jf1035004. PMid:21214175.

12 Gogoi, K., Saikia, J. P., & Konwar, B. K. (2013). Immobilizing silver nanoparticles (SNP) on Musa balbisiana cellulose. Colloids and Surfaces. B, Biointerfaces, 102, 136-138. http://dx.doi.org/10.1016/j.colsurfb.2012.07.031. PMid:23010111.

13 Ohwoavworhua, F. O., Adelakun, T. A., & Kunle, O. O. (2007). A comparative evaluation of the flow and compaction characteristics of a-cellulose obtained from waste paper. Tropical Journal of Pharmaceutical Research, 6(1), 645-651. http://dx.doi.org/10.4314/tjpr.v6i1.14642.

14 Emeje, M., John-Africa, L., Isimi, Y., Kunle, O., & Ofoefule, S. (2012). Eudraginated polymer blends: a potential oral controlled drug delivery system for theophylline. Acta Pharmaceutica, 62(1), 71-82. http://dx.doi.org/10.2478/v10007-012-0001-6. PMid:22472450.

15 Emeje, M., Nwabunike, P., Isimi, C., Kunle, O., & Ofoefule, S. (2008). Hydro-alcoholic media: am emerging in vitro tool for predicting dose dumping from a controlled release matrices. Journal of Pharmacology and Toxicology, 3(2), 84-92. http://dx.doi.org/10.3923/jpt.2008.84.92.

16 Emeje, M. O., Kunle, O. O., & Ofoefule, S. I. (2006). Effect of the molecular size of carboxymethylcellulose and some polymers on the sustained release of theophylline from a hydrophilic matrix. Acta Pharmaceutica, 56(3), 325-335. PMid:19831281.

17 Nwajiobi, C. C., Otaigbe, J. O. E., & Oriji, O. (2019). Isolation and characterization of microcrystalline cellulose from papaya stem. Der Pharma Chemica, 11(3), 19-26. Retrieved in 2018, November 6, from https://www.derpharmachemica.com/pharma-chemica/isolation-and-characterization-of-microcrystalline-cellulose-from-empapayaem-stem-18356.html

18 Pawar, H., & Varkhade, C. (2014). Isolation, characterization and investigation of Plantago ovata husk polysaccharide as superdisintegrant. International Journal of Biological Macromolecules, 69, 52-58. http://dx.doi.org/10.1016/j.ijbiomac.2014.05.019. PMid:24854213.

19 Atef, M., Rezaei, M., & Behrooz, R. (2014). Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose. International Journal of Biological Macromolecules, 70, 537-544. http://dx.doi.org/10.1016/j.ijbiomac.2014.07.013. PMid:25036597.

20 Panda, B., Parihar, A. S., & Mallick, S. (2014). Effect of plasticizer on drug crystallinity of hydroxypropyl methylcellulose matrix film. International Journal of Biological Macromolecules, 67, 295-302. http://dx.doi.org/10.1016/j.ijbiomac.2014.03.033. PMid:24685464.

5f1049560e8825fd4fe52f61 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections