Sulfonation degree effect on ion-conducting SPEEK-titanium oxide membranes properties
Marrero, Jacqueline Costa; Gomes, Ailton de Souza; Hui, Wang Shu; Dutra Filho, José Carlos; Oliveira, Vivianna Silva de
Abstract
Polymeric membranes were developed using a SPEEK (sulfonated poly(ether ether ketone)) polymer matrix, containing titanium oxide (TiO2 ) (incorporated by sol-gel method). SPEEK with different sulfonation degrees (SD): 63% and 50% were used. The influence of sulfonation degree on membrane properties was investigated. The thermal analysis (TGA and DTGA) and X-ray diffraction (XRD) were carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluate the proton conductivity of the membranes. The proton conductivities in water were of 3.25 to 37.08 mS.cm-1. Experimental data of impedance spectroscopy were analyzed with equivalent circuits using the Zview software, and the results showed that, the best fitted was at 80 °C.
Keywords
References
1. Nikolic, V. M., Krkljes, A., Popovic, Z. K., Lausevic, Z. V., & Miljanic, S. S. (2007). On the use of gamma irradiation crosslinked PVA membranes in hydrogen fuel cells. Electrochemistry Communications, 11(9), 2661-2665. http://dx.doi.org/10.1016/j.elecom.2007.08.022.
2. Anis, A., Banthia, A. K., & Bandyopadhyay, S. (2008). Synthesis & characterization of PVA/STA composite polymer electrolyte membranes for fuel cell application. Journal of Materials Engineering and Performance, 17(5), 772-779. http://dx.doi.org/10.1007/s11665-008-9200-1.
3. Di Vona, M. L., Ahmed, Z., Bellitto, S., Lenci, A., Traversa, E., & Licoccia, S. (2007). SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol-gel process. Journal of Membrane Science, 296(1-2), 156-161. http://dx.doi.org/10.1016/j.memsci.2007.03.037.
4. Kawaguti, C. A., Dahmouche, K., & Gomes, A. de S. (2012). Nanostructure and properties of proton-conducting sulfonated poly(ether ether ketone) (SPEEK) and zirconia-SPEEK hybrid membranes for direct alcohol fuel cells: effect of the nature of swelling solvent and incorporation of heteropolyacid. Polymer International, 61(1), 82-92. http://dx.doi.org/10.1002/pi.3151.
5. Yang, T., Xu, Q., Wang, Y., Lu, B., & Zhang, P. (2008). Primary study on double-layer membranes for direct methanol fuel cell. International Journal of Hydrogen Energy, 33(22), 6766-6771. http://dx.doi.org/10.1016/j.ijhydene.2008.08.011.
6. Kobayashi, T., Rikukawa, M., Sanui, K., & Ogata, N. (1998). Proton Conducting Polymers Derived from Poly (ether-ether ketone) and Poly (4-phenoxybenzoyl-1,4 phenylene). Solid State Ionics, 106(3-4), 219-225. http://dx.doi.org/10.1016/S0167-2738(97)00512-2.
7. Zaidi, S. M. J. (2003). Polymer sulfonation: a versatile route to prepare proton-conducting membrane material for advanced technologies. Arabian Journal for Science and Engineering, 28(2B), 183-194.
8. Hou, H., Polini, R., Di Vona, M. L., Liu, X., Sgreccia, E., Chailan, J.-F., & Knauth, P. (2013). Thermal crosslinked and nanodiamond reinforced SPEEK composite membrane for PEMFC. International Journal of Hydrogen Energy, 38(8), 3346-3351. http://dx.doi.org/10.1016/j.ijhydene.2012.12.019.
9. Di Vona, M. L., Sgreccia, E., Donnadio, A., Casciola, M., Chailan, J. F., Auer, G., & Knauth, P. (2011). Composite polymer electrolytes of sulfonated poly-ether-ether-ketone (SPEEK) with organically functionalized TiO2 . Journal of Membrane Science, 369(1-2), 536-544. http://dx.doi.org/10.1016/j.memsci.2010.12.044.
10. Macdonald, J. R. (1987). Impedance spectroscopy-Emphasizing solid materials and systems. New York: Wiley-Interscience.
11. Macdonald, J. R., & Potter, L. D.Jr (1987). A flexible procedure for analyzing impedance spectroscopy results: Description and illustrations. Solid State Ionics, 23(1), 61-79. http://dx.doi.org/10.1016/0167-2738(87)90068-3.
12. Carbone, A., Pedicini, R., Portale, G., Longo, A., D’Ilario, L., & Passalacqua, E. (2006). Sulphonated poly(ether ether ketone) membranes for fuel cell aplication: thermal and structural characterization. Journal of Power Sources, 163(1), 18-26. http://dx.doi.org/10.1016/j.jpowsour.2005.12.066.
13. Dutra, J. C., Fo., Santos, T. R., & Gomes, A. S. (2014). Nanostructured Polyelectrolytes Based on SPEEK/TiO2 for Direct Ethanol Fuel Cells (DEFCs). Polímeros: Ciência e Tecnologia, 24, 43-48. http://dx.doi.org/10.4322/polimeros.2014.069.