Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Mechanical and thermal properties of polystyrene and medium density fiberboard composites

Juliana Cristina Kreutz; Paulo Ricardo de Souza; Viviane Prima Benetti; Adonilson dos Reis Freitas; Paulo Rodrigo Stival Bittencourt; Luciana Gaffo

Downloads: 0
Views: 318


Virgin polystyrene (PS) composites were reinforced with medium density fiberboard (MDF) residue, considering the influence of fiber content. The composites were evaluated for their morphology, identification of functional groups and thermal behavior. Mechanical tests and a degradation study under ultraviolet radiation (UV) were also performed. The results showed that the best properties were obtained for composites with 4% by mass of MDF waste. The addition of residue was found to increase thermal stability of polystyrene compared to its pure form. The morphology of the composites showed homogeneity of the material. In the degradation tests under ultraviolet (UV) radiation, it was found that the presence of MDF residue slows down the matrix degradation process when evaluated by means of tensile strength. Polystyrene composites reinforced with MDF residues showed good mechanical properties and can be applied in the development of materials that do not need a good appearance.



waste valuation, pollution, sustainability


1 Shin, C., & Chase, G. G. (2005). Nanofibers from recycle waste expanded polystyrene using natural solvent. Polymer Bulletin, 55(3), 209-215. http://dx.doi.org/10.1007/s00289-005-0421-2.

2 Zhao, Z., Cai, W., Xu, Z., Mu, X., Ren, X., Zou, B., Gui, Z., & Hu, Y. (2020). Multi-role p-styrene sulfonate assisted electrochemical preparation of functionalized graphene nanosheets for improving fire safety and mechanical property of polystyrene composites. Composites. Part B, Engineering, 181, 1359-1368. http://dx.doi.org/10.1016/j.compositesb.2019.107544.

3 Lithner, D., Larsson, Å., & Dave, G. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. The Science of the Total Environment, 409(18), 3309-3324. http://dx.doi.org/10.1016/j.scitotenv.2011.04.038. PMid:21663944.

4 Chaukura, N., Gwenzi, W., Tavengwa, N., & Manyuchi, M. M. (2016). Biosorbents for the removal of synthetic organics and emerging pollutants: opportunities and challenges for developing countries. Environmental Development, 19, 84-89. http://dx.doi.org/10.1016/j.envdev.2016.05.002.

5 Berglund, L., & Rowell, R. M. (2005). Wood composites. In R. M. Rowell, Handbook of wood chemistry and wood composites (pp. 279-301). Florida: CRC Press.

6 Irle, M., & Barbu, M. C. (2010). Wood-based panel technology. In H. Thoemen, M. Irle & M. Sernek, Woodbased panels: an introduction for specialists (pp. 1-94). London: Brunel University Press.

7 Food and Agriculture Organization of the United Nations – FAO. (2016). Global forest products facts and figures. Rome: FAO Forestry Department. Retrieved from http://www.fao.org/3/I7034EN/i7034en.pdf

8 Irle, M., Privat, F., Couret, L., Belloncle, C., Déroubaix, G., Bonnin, E., & Cathala, B. (2018). Advanced recycling of post-consumer solid wood and MDF. Wood Material Science & Engineering, 14(1), 1-5. http://dx.doi.org/10.1080/17480272.2018.1427144.

9 Hillig, É., Iwakiri, S., Haselein, C., Bianchi, O., & Hillig, D. (2011). Characterization of composites made of HDPE and furniture industry sawdust. Part II: double-screw extrusion. Ciência Florestal, 21(2), 335-347. http://dx.doi.org/10.5902/198050983237.

10 Gomes, J., Godoi, G., & Meira de Souza, L., & Souza, L. (2017). Water absorption and mechanical properties of polymer composites using waste MDF. Polímeros: Ciência e Tecnologia, 27(spe), 48-55. http://dx.doi.org/10.1590/0104-1428.1915.

11 Souza, D., Kieling, A., Rocha, T., & Bhrem, F. (2017). MDF waste: environmental diagnosis and waste characterization for use as filler in polymer matrix. Enemet, 16, 1672-1681. http://dx.doi.org/10.5151/1516-392X-27874.

12 Minor, J. L. (1994). Hornification – its origin and meaning. Paper Recycling, 3(2), 93-95. Retrieved from http://www.fpl.fs.fed.us/documnts/pdf1994/minor94a.pdf

13 Kato, K. L., & Cameron, R. E. (1999). A review of the relationship between thermally-accelerated ageing of paper and hornification. Cellulose (London, England), 6(1), 23-40. http://dx.doi.org/10.1023/A:1009292120151.

14 Bütün, F., Sauerbier, P., Militz, H., & Mai, C. (2019). The effect of fibreboard (MDF) disintegration technique on wood polymer composites (WPC) produced with recovered wood particles. Composites. Part A, Applied Science and Manufacturing, 118, 312-316. http://dx.doi.org/10.1016/j.compositesa.2019.01.006.

15 Artiaga, K. C. M. (2014). Desenvolvimento e aplicação do compósito plástico-madeira (Poliuretano/resíduo de MDF) na indústria de bases de calçados (Dissertação de mestrado). Universidade Federal de Ouro Preto, Ouro Preto.

16 Magaton, A. D. S., Piló-Veloso, D., & Colodette, J. L. (2008). Caracterização das O-acetil-(4-O-metilglicurono)xilanas isoladas da madeira de Eucalyptus urograndis. Quimica Nova, 31(5), 1085-1088. http://dx.doi.org/10.1590/S0100-40422008000500027.

17 Chauhan, R. S., Gopinath, S., Razdan, P., Delattre, C., Nirmala, G. S., & Natarajan, R. (2008). Thermal decomposition of expanded polystyrene in a pebble bed reactor to get higher liquid fraction yield at low temperatures. Waste Management (New York, N.Y.), 28(11), 2140-2145. http://dx.doi.org/10.1016/j.wasman.2007.10.001. PMid:18032014.

18 Chen, G., Liu, S., Chen, S., & Qi, Z. (2001). FTIR spectra, thermal properties, and dispersibility of a polystyrene/montmorillonite nanocomposite. Macromolecular Chemistry and Physics, 202(7), 1189-1193. http://dx.doi.org/10.1002/1521-3935(20010401)202:7<1189::AID-MACP1189>3.0.CO;2-M.

19 Yuan, C., Zhang, J., Chen, G., & Yang, J. (2011). Insight into carbon nanotube effect on polymer molecular orientation: an infrared dichroism study. Chemical Communications, 47(3), 899-901. http://dx.doi.org/10.1039/C0CC03198D. PMid:21079820.

20 Sun, G., Chen, G., Liu, J., Yang, J., Xie, J., Liu, Z., Li, R., & Li, X. (2009). A facile gemini surfactant-improved dispersion of carbon nanotubes in polystyrene. Polymer, 50(24), 5787-5793. http://dx.doi.org/10.1016/j.polymer.2009.10.007.

21 Bermúdez, A. Y. L., & Salazar, R. (2008). Synthesis and characterization of the polystyrene - Asphaltene graft copolymer by FT-IR spectroscopy. Ciencia, Tecnología y Futuro, 3(4), 157-167. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832008000100011

22 Ferreira, S. D., Altafini, C. R., Perondi, D., & Godinho, M. (2015). Pyrolysis of Medium Density Fiberboard (MDF) wastes in a screw reactor. Energy Conversion and Management, 92, 223-233. http://dx.doi.org/10.1016/j.enconman.2014.12.032.

23 Khanjanzadeh, H., Behrooz, R., Bahramifar, N., Pinkl, S., & Gindl-Altmutter, W. (2019). Application of surface chemical functionalized cellulose nanocrystals to improve the performance of UF adhesives used in wood based composites - MDF type. Carbohydrate Polymers, 206, 11-20. http://dx.doi.org/10.1016/j.carbpol.2018.10.115. PMid:30553303.

24 Kim, K.H., Jahan, S., & Lee, J. (2011). Exposure to Formaldehyde and Its Potential Human Health Hazards. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 29(4), 277-299. http://dx.doi.org/10.1080/10590501.2011.629972. PMid:22107164.

25 Botan, R., Nogueira, T. R., Lona, L. M. F., & Wypych, F. (2011). Synthesis and characterization of exfoliated polystyrene: layered double hydroxide nanocomposites via in situ polymerization. Polímeros: Ciência e Tecnologia, 21(1), 34-38. http://dx.doi.org/10.1590/S0104-14282011005000017.

26 Dominguini, L., Rosa, R. G., Martinello, K., Pizzolo, J. P., & Fiori, M. A. (2015). Thermal behavior of composites of PS-LDH (Mg-Al) modified with SDB and SDS. Polímeros: Ciência e Tecnologia, 25(spe), 25-30. http://dx.doi.org/10.1590/0104-1428.1581.

27 Spinacé, M. A. S., Fermoseli, K. K. G., & De Paoli, M. A. (2009). Recycled polypropylene reinforced with curaua fibers by extrusion. Journal of Applied Polymer Science, 112(6), 3686-3694. http://dx.doi.org/10.1002/app.29683.

28 Cambridge University Engineering Departament. (2003). Materials data book. Cambridge: Cambridge University. Retrieved from http://www-mdp.eng.cam.ac.uk/web/library/enginfo/cueddatabooks/materials.pdf

29 Borsoi, C., Scienza, L. C., Zattera, A. J., & Angrizani, C. C. (2011). Obtainment and characterization of composites using polystyrene as matrix and fiber waste from cotton textile industry as reinforcement. Polímeros: Ciência e Tecnologia, 21(4), 271-279. http://dx.doi.org/10.1590/S0104-14282011005000055.

30 Antich, P., Vázquez, A., Mondragon, I., & Bernal, C. (2006). Mechanical behavior of high impact polystyrene reinforced with short sisal fibers. Composites. Part A, Applied Science and Manufacturing, 37(1), 139-150. http://dx.doi.org/10.1016/j.compositesa.2004.12.002.

31 American National Standards Institute – ANSI. (2009). ANSI A2081 - Mat-formed wood particleboard: specification. United States: National Particlepanel Association.

32 Şahin, T., Sinmazcelik, T., & Şahin, Ş. (2007). The effect of natural weathering on the mechanical, morphological and thermal properties of high impact polystyrene (HIPS). Materials & Design, 28(8), 2303-2309. http://dx.doi.org/10.1016/j.matdes.2006.07.013.

33 Gadioli, R., Waldman, W. R., & De Paoli, M. A. (2016). Lignin as a green primary antioxidant for polypropylene. Journal of Applied Polymer Science, 133(45), 1-7. http://dx.doi.org/10.1002/app.43558.

34 Darie, R. N., Bodirlau, R., Teaca, C. A., Macyszyn, J., Kozlowski, M., & Spiridon, I. (2013). Influence of accelerated weathering on the properties of polypropylene/polylactic acid/eucalyptus wood composites. International Journal of Polymer Analysis and Characterization, 18(4), 315-327. http://dx.doi.org/10.1080/1023666X.2013.784936.

35 Matuana, L., Jin, S., & Stark, N. (2011). Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer. Polymer Degradation & Stability, 96(1), 97-106. http://dx.doi.org/10.1016/j.polymdegradstab.2010.10.003.

36 Joseph, P. V., Rabello, M. S., Mattoso, L. H. C., Joseph, K., & Thomas, S. (2002). Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites. Composites Science and Technology, 62(10), 1357-1372. http://dx.doi.org/10.1016/S0266-3538(02)00080-5.

37 Angrizani, C. C., Oliveira, B. F., & Amico, S. C. (2015). Evaluation of the durability performance of glass-fiber reinforcement epoxy composites exposed to accelerated higrothermal ageing. Journal of Materials Science and Engineering with Advanced Technology, 11(2), 31-47. http://dx.doi.org/10.18642/jmseat_7100121507.

38 Fernandes, L. L., Freitas, C. A., Demarquette, N. R., & Fechine, G. J. M. (2012). Influence of the type of polypropylene on the photodegradation of blends of polypropylene/high impact polystyrene. Polímeros: Ciência e Tecnologia, 22(1), 61-68. http://dx.doi.org/10.1590/S0104-14282012005000013.

39 Fechine, J. M., Santos, A. B., & Rabello, M. S. (2006). The evaluation of polyolefin photodegradation with natural and artificial exposure. Quimica Nova, 29(4), 674-680. http://dx.doi.org/10.1590/S0100-40422006000400009.

40 Borsoi, C., Berwig, K. H., Scienza, L. C., Zoppas, B. C. D. A., Brandalise, R. N., & Zattera, A. J. (2014). Behavior in simulated soil of recycled expanded polystyrene/waste cotton composites. Materials Research, 17(1), 275-283. http://dx.doi.org/10.1590/S1516-14392013005000167.

61a52351a953953cf42b1013 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections