Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.06820
Polímeros: Ciência e Tecnologia
Original Article

Layered cryogels laden with Brazilian honey intended for wound care

Gabriela de Souza dos Santos; Natália Rodrigues Rojas dos Santos; Ingrid Cristina Soares Pereira; Antonio José de Andrade Júnior; Edla Maria Bezerra Lima; Adriana Paula Minguita; Luiz Henrique Guerreiro Rosado; Ana Paula Duarte Moreira; Antonieta Middea; Edlene Ribeiro Prudencio; Rosa Helena Luchese; Renata Nunes Oliveira

Downloads: 0
Views: 729

Abstract

PVA cryogels are well established as candidate biomaterials for wound healing applications but are not themselves biodegradable or antimicrobial. Blending PVA with NaCMC (CMC) or gelatin (G) can increase the gel’s ability to swell and would introduce a degree of biodegradability. The incorporation of appropriate amounts of a natural antimicrobial/healing agents, such as honey (H), would contribute to the gels properties. The present work addresses the development and characterization of layered gels (PVA-H, PVA-CMC-H and PVA-G-H, with empty PVA, PVA-CMC, PVA-G gels presented as controls). The gels were characterized by FTIR, DSC, in vitro analysis of swelling and microbiological (S. aureus) effects. Addition of gelatin, NaCMC and honey to PVA diminished the PVA chains’ ability to pack into crystallites. Samples containing honey swelled less and presented higher weight loss/biodegradability than samples without honey. Only the honey-laden PVA-CMC and PVA-G presented activity against S. aureus.

Keywords

layered hydrogel, PVA, NaCMC, gelatin, honey

References

1 Simões, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonça, A. G., & Correia, I. J. (2018). Recent advances on antimicrobial wound dressing: a review. European Journal of Pharmaceutics and Biopharmaceutics, 127, 130-141. http://dx.doi.org/10.1016/j.ejpb.2018.02.022. PMid:29462687.

2 Tsao, C. T., Leung, M., Chang, J. Y., & Zhang, M. (2014). A simple material model to generate epidermal and dermal layers in vitro for skin regeneration. Journal of Materials Chemistry B, Materials for Biology and Medicine, 2(32), 5256-5264. http://dx.doi.org/10.1039/C4TB00614C. PMid:25147728.

3 Lee, Y. H., Chang, J. J., Yang, M. C., Chien, C. T., & Lai, W. F. (2012). Acceleration of wound healing in diabetic rats by layered hydrogel dressing. Carbohydrate Polymers, 88(3), 809-819. http://dx.doi.org/10.1016/j.carbpol.2011.12.045.

4 Morales Hurtado, M., de Vries, E. G., Zeng, X., & van der Heide, E. (2016). A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model. Journal of the Mechanical Behavior of Biomedical Materials, 62, 319-332. http://dx.doi.org/10.1016/j.jmbbm.2016.05.001. PMid:27236420.

5 Tavakoli, J., Mirzaei, S., & Tang, Y. (2018). Cost-effective double-layer hydrogel composites for wound dressing applications. Polymers, 10(3), 305. http://dx.doi.org/10.3390/polym10030305. PMid:30966340.

6 Jiang, S., Liu, S., & Feng, W. (2011). PVA hydrogel properties for biomedical application. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 1228-1233. http://dx.doi.org/10.1016/j.jmbbm.2011.04.005. PMid:21783131.

7 Reis, E. F., Campos, F. S., Lage, A. P., Leite, R. C., Heneine, L. G., Vasconcelos, W. L., Lobato, Z. I. P., & Mansur, H. S. (2006). Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Materials Research, 9(2), 185-191. http://dx.doi.org/10.1590/S1516-14392006000200014.

8 Tontowi, A. E., Perkasa, D. P., Siswomihardjo, W., & Darwis, D. (2016). Effect of polyvinyl alcohol (PVA) blending and gamma irradiation on compressive strength of FHAp/FGel composite as candidate of scaffold. IACSIT International Journal of Engineering and Technology, 8(1), 108-116.

9 Gupta, S., Webster, T. J., & Sinha, A. (2011). Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface. Journal of Materials Science: Materials in Medicine, 22(7), 1763-1772. http://dx.doi.org/10.1007/s10856-011-4343-2. PMid:21643819.

10 El-Fawal, G. F., Yassin, A. M., & El-Deeb, N. M. (2017). The novelty in fabrication of poly vinyl alcohol/κ-carrageenan hydrogel with Lactobacillus bulgaricus extract as anti-inflammatory wound dressing agent. AAPS PharmSciTech, 18(5), 1605-1616. http://dx.doi.org/10.1208/s12249-016-0628-6. PMid:27620196.

11 Choi, J. S., Kim, D. W., Kim, D. S., Kim, J. O., Yong, C. S., Cho, K. H., Youn, Y. S., Jin, S. G., & Choi, H. G. (2016). Novel neomycin sulfate-loaded hydrogel dressing with enhanced physical dressing properties and wound-curing effect. Drug Delivery, 23(8), 2806-2812. http://dx.doi.org/10.3109/10717544.2015.1089958. PMid:26394193.

12 Sannino, A., Demitri, C., & Madaghiele, M. (2009). Biodegradable cellulose-based hydrogels: design and applications. Materials, 2(2), 353-373. http://dx.doi.org/10.3390/ma2020353.

13 Nayak, S., & Kundu, S. C. (2014). Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material. Journal of Biomedical Materials Research: Part A, 102(6), 1928-1940. http://dx.doi.org/10.1002/jbm.a.34865. PMid:23853114.

14 Capanema, N. S. V., Mansur, A. A. P., Jesus, A. C., Carvalho, S. M., Oliveira, L. C., & Mansur, H. S. (2018). Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International Journal of Biological Macromolecules, 106, 1218-1234. http://dx.doi.org/10.1016/j.ijbiomac.2017.08.124. PMid:28851645.

15 Namazi, H., Rakhshaei, R., Hamishehkar, H., & Kafil, H. S. (2016). Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. International Journal of Biological Macromolecules, 85, 327-334. http://dx.doi.org/10.1016/j.ijbiomac.2015.12.076. PMid:26740467.

16 Lim, S. J., Lee, J. H., Piao, M. G., Lee, M. K., Oh, D. H., Hwang, D. H., Quan, Q. Z., Yong, C. S., & Choi, H. G. (2010). Effect of sodium carboxymethylcellulose and fucidic acid on the gel characterization of polyvinylalcohol-based wound dressing. Archives of Pharmacal Research, 33(7), 1073-1081. http://dx.doi.org/10.1007/s12272-010-0714-3. PMid:20661718.

17 Lee, J. H., Lim, S. J., Oh, D. H., Ku, S. K., Li, D. X., Yong, C. S., & Choi, H. G. (2010). Wound healing evaluation of sodium fucidate-loaded polyvinylalcohol/sodium carboxymethylcellulose-based wound dressing. Archives of Pharmacal Research, 33(7), 1083-1089. http://dx.doi.org/10.1007/s12272-010-0715-2. PMid:20661719.

18 Mariod, A. A., & Adam, H. F. (2013). Review: Gelatin, source, extraction and industrial applications. Acta Scientiarum Polonorum. Technologia Alimentaria, 12(2), 135-147.

19 Etxabide, A., Vairo, C., Santos-Vizcaino, E., Guerrero, P., Pedraz, J. L., Igartua, M., de la Caba, K., & Hernandez, R. M. (2017). Ultra thin hydro-films based on lactose-crosslinked fish gelatin for wound healing applications. International Journal of Pharmaceutics, 530(1-2), 455-467. http://dx.doi.org/10.1016/j.ijpharm.2017.08.001. PMid:28789885.

20 Rocasalbas, G., Francesko, A., Touriño, S., Fernández-Francos, X., Guebitz, G. M., & Tzanov, T. (2013). Laccase-assisted formation of bioactive chitosan/gelatin hydrogel stabilized with plant polyphenols. Carbohydrate Polymers, 92(2), 989-996. http://dx.doi.org/10.1016/j.carbpol.2012.10.045. PMid:23399119.

21 Pal, K., Banthia, A. K., & Majumdar, D. K. (2007). Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. AAPS PharmSciTech, 8(1), 21. http://dx.doi.org/10.1208/pt080121. PMid:17408220.

22 Fan, L., Yang, H., Yang, J., Peng, M., & Hu, J. (2016). Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydrate Polymers, 146, 427-434. http://dx.doi.org/10.1016/j.carbpol.2016.03.002. PMid:27112893.

23 Shamloo, A., Sarmadi, M., Aghababaie, Z., & Vossoughi, M. (2018). Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. International Journal of Pharmaceutics, 537(1-2), 278-289. http://dx.doi.org/10.1016/j.ijpharm.2017.12.045. PMid:29288809.

24 Martinotti, S., & Ranzato, E. (2018). Honey, wound repair and regenerative medicine. Journal of Functional Biomaterials, 9(2), 34. http://dx.doi.org/10.3390/jfb9020034. PMid:29738478.

25 Meo, S. A., Al-Asiri, S. A., Mahesar, A. L., & Ansari, M. J. (2017). Role of honey in modern medicine. Saudi Journal of Biological Sciences, 24(5), 975-978. http://dx.doi.org/10.1016/j.sjbs.2016.12.010. PMid:28663690.

26 Santos, A. M. N., Moreira, A. P. D., Carvalho, C. W. P., Luchese, R., Ribeiro, E., McGuinness, G. B., Mendes, M. F., & Oliveira, R. N. (2019). Physically cross-linked gels of PVA with natural polymers as matrices for manuka honey release in wound-care applications. Materials, 12(4), 559. http://dx.doi.org/10.3390/ma12040559. PMid:30781788.

27 Mandal, S., DebMandal, M., Pal, N. K., & Saha, K. (2010). Antibacterial activity of honey against clinical isolates of Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica serovar Typhi. Asian Pacific Journal of Tropical Medicine, 3(12), 961-964. http://dx.doi.org/10.1016/S1995-7645(11)60009-6.

28 Guirguis, O. W., & Moselhey, M. T. H. (2012). Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. Nature and Science, 04(01), 57-67. http://dx.doi.org/10.4236/ns.2012.41009.

29 El-Kased, R. F., Amer, R. I., Attia, D., & Elmazar, M. M. (2017). Honey-based hydrogel: in vitro and comparative in vivo evaluation for burn wound healing. Scientific Reports, 7(1), 9692. http://dx.doi.org/10.1038/s41598-017-08771-8. PMid:28851905.

30 Giusto, G., Vercelli, C., Comino, F., Caramello, V., Tursi, M., & Gandini, M. (2017). A new, easy-to-make pectin-honey hydrogel enhances wound healing in rats. BMC Complementary and Alternative Medicine, 17(1), 266. http://dx.doi.org/10.1186/s12906-017-1769-1. PMid:28511700.

31 Tavakoli, J., & Tang, Y. (2017). Honey/PVA hybrid wound dressings with controlled release of antibioticsStructural, physico-mechanical and in-vitro biomedical studies. Materials Science and Engineering C, 77, 318-325. http://dx.doi.org/10.1016/j.msec.2017.03.272. PMid:28532035.

32 Abd El-Malek, F. F., Yousef, A. S., & El-Assar, S. A. (2017). Hydrogel film loaded with new formula from manuka honey for treatment of chronic wound infections. Journal of Global Antimicrobial Resistance, 11, 171-176. http://dx.doi.org/10.1016/j.jgar.2017.08.007. PMid:28830809.

33 Wang, T., Zhu, X. K., Xue, X. T., & Wu, D. Y. (2012). Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydrate Polymers, 88(1), 75-83. http://dx.doi.org/10.1016/j.carbpol.2011.11.069.

34 Oliveira, R. N., Paranhos da Silva, C. M., Moreira, A. P. D., Mendonça, R. H., Thiré, R. M., & McGuinness, G. B. (2017). Comparative analysis of PVA hydrogels incorporating two natural antimicrobials: Punica granatum and Arnica montana tinctures. Journal of Applied Polymer Science, 134(41), 45392. http://dx.doi.org/10.1002/app.45392.

35 Oliveira, R. N., Rouzé, R., Quilty, B., Alves, G. G., Soares, G. D. A., Thiré, R. M. S. M., & McGuinness, G. B. (2014). Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings. Interface Focus, 4(1), 20130049. http://dx.doi.org/10.1098/rsfs.2013.0049. PMid:24501677.

36 Pietrucha, K., & Verne, S. (2009). Synthesis and characterization of a new generation of hydrogels for biomedical applications. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering (pp. 1-4). Berlin: Springer. http://dx.doi.org/10.1007/978-3-642-03900-3_1.

37 Abureesh, M. A., Oladipo, A. A., & Gazi, M. (2016). Facile synthesis of glucose-sensitive chitosan-poly(vinyl alcohol) hydrogel: drug release optimization and swelling properties. International Journal of Biological Macromolecules, 90, 75-80. http://dx.doi.org/10.1016/j.ijbiomac.2015.10.001. PMid:26459171.

38 Pawde, S. M., & Deshmukh, K. (2008). Characterization of polyvinyl alcohol/gelatin blend hydrogel films for biomedical applications. Journal of Applied Polymer Science, 109(5), 3431-3437. http://dx.doi.org/10.1002/app.28454.

39 Chen, X., Chen, C., Zhang, H., Huang, Y., Yang, J., & Sun, D. (2017). Facile approach to the fabrication of 3D cellulose nanofibrils (CNFs) reinforced poly(vinyl alcohol) hydrogel with ideal biocompatibility. Carbohydrate Polymers, 173, 547-555. http://dx.doi.org/10.1016/j.carbpol.2017.06.036. PMid:28732898.

40 Ibrahim, M. M., Koschella, A., Kadry, G., & Heinze, T. (2013). Evaluation of cellulose and carboxymethyl cellulose/poly(vinyl alcohol) membranes. Carbohydrate Polymers, 95(1), 414-420. http://dx.doi.org/10.1016/j.carbpol.2013.03.012. PMid:23618287.

41 Hassan, E. A., Hassan, M. L., Moorefield, C. N., & Newkome, G. R. (2015). New supramolecular metallo-terpyridine carboxymethyl cellulose derivatives with antimicrobial properties. Carbohydrate Polymers, 116, 2-8. http://dx.doi.org/10.1016/j.carbpol.2014.06.056. PMid:25458266.

42 Juncu, G., Stoica-Guzun, A., Stroescu, M., Isopencu, G., & Jinga, S. I. (2016). Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films. International Journal of Pharmaceutics, 510(2), 485-492. http://dx.doi.org/10.1016/j.ijpharm.2015.11.053. PMid:26688041.

43 Shehap, A. (2008). Thermal and spectroscopic studies of polyvinyl alcohol/sodium carboxy methyl cellulose blends. Egyptian Journal of Solid, 31(1), 75-91.

44 Ikhuoria, E. U., Omorogbe, S. O., Agbonlahor, O. G., Iyare, N. O., Pillai, S., & Aigbodion, A. I. (2017). Spectral analysis of the chemical structure of carboxymethylated cellulose produced by green synthesis from coir fibre. Ciência e Tecnologia dos Materiais, 29(2), 55-62. http://dx.doi.org/10.1016/j.ctmat.2016.05.007.

45 Abou-Yousef, H., & Kamel, S. (2015). High efficiency antimicrobial cellulose-based nanocomposite hydrogels. Journal of Applied Polymer Science, 132(31). http://dx.doi.org/10.1002/app.42327.

46 Chaturvedi, A., Bajpai, A. K., & Bajpai, J. (2015). Preparation and characterization of poly(vinyl alcohol) cryogel-silver nanocomposites and evaluation of blood compatibility, cytotoxicity, and antimicrobial behaviors. Polymer Composites, 36(11), 1983-1997. http://dx.doi.org/10.1002/pc.23108.

47 Singh, R. K., & Khatri, O. P. (2012). A scanning electron microscope based new method for determining degree of substitution of sodium carboxymethyl cellulose. Journal of Microscopy, 246(1), 43-52. http://dx.doi.org/10.1111/j.1365-2818.2011.03583.x. PMid:22150298.

48 Anjos, O., Campos, M. G., Ruiz, P. C., & Antunes, P. (2015). Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chemistry, 169, 218-223. http://dx.doi.org/10.1016/j.foodchem.2014.07.138. PMid:25236219.

49 Kędzierska-Matysek, M., Matwijczuk, A., Florek, M., Barłowska, J., Wolanciuk, A., Matwijczuk, A., Chruściel, E., Walkowiak, R., Karcz, D., & Gładyszewska, B. (2018). Application of FTIR spectroscopy for analysis of the quality of honey. BIO Web of Conferences, 10, 02008. http://dx.doi.org/10.1051/bioconf/20181002008.

50 Tahir, H. E., Xiaobo, Z., Zhihua, L., Jiyong, S., Zhai, X., Wang, S., & Mariod, A. A. (2017). Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy. Food Chemistry, 226, 202-211. http://dx.doi.org/10.1016/j.foodchem.2017.01.024. PMid:28254013.

51 Das, C., Chakraborty, S., Acharya, K., Bera, N. K., Chattopadhyay, D., Karmakar, A., & Chattopadhyay, S. (2017). FT-MIR supported Electrical Impedance Spectroscopy based study of sugar adulterated honeys from different floral origin. Talanta, 171, 327-334. http://dx.doi.org/10.1016/j.talanta.2017.05.016. PMid:28551147.

52 Gok, S., Severcan, M., Goormaghtigh, E., Kandemir, I., & Severcan, F. (2015). Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chemistry, 170, 234-240. http://dx.doi.org/10.1016/j.foodchem.2014.08.040. PMid:25306340.

53 Yang, C., & Wöll, C. (2017). IR spectroscopy applied to metal oxide surfaces: adsorbate vibrations and beyond. Advances in Physics: X, 2(2), 373-408. https://doi.org/10.1080/23746149.2017.1296372.

54 Agarwal, T., Narayan, R., Maji, S., Behera, S., Kulanthaivel, S., Maiti, T. K., Banerjee, I., Pal, K., & Giri, S. (2016). Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications. International Journal of Biological Macromolecules, 93(Pt B), 1499-1506. http://dx.doi.org/10.1016/j.ijbiomac.2016.04.028. PMid:27086289.

55 Sudhamani, S., Prasad, M., & Udaya Sankar, K. (2003). DSC and FTIR studies on Gellan and Polyvinyl alcohol (PVA) blend films. Food Hydrocolloids, 17(3), 245-250. http://dx.doi.org/10.1016/S0268-005X(02)00057-7.

56 Abdulkhani, A., Hojati Marvast, E., Ashori, A., Hamzeh, Y., & Karimi, A. N. (2013). Preparation of cellulose/polyvinyl alcohol biocomposite films using 1-n-butyl-3-methylimidazolium chloride. International Journal of Biological Macromolecules, 62, 379-386. http://dx.doi.org/10.1016/j.ijbiomac.2013.08.050. PMid:24076203.

57 Ganji, F., Vasheghani-Farahani, S., & Vasheghani-Farahani, E. (2010). Theoretical description of hydrogel swelling: a review. Iranian Polymer Journal, 19(5), 375-398.

58 Kouchak, M., Ameri, A., Naseri, B., & Kargar Boldaji, S. (2014). Chitosan and polyvinyl alcohol composite films containing nitrofurazone: preparation and evaluation. Iranian Journal of Basic Medical Sciences., 17(1), 14-20. http://dx.doi.org/10.22038/ijbms.2014.2150. PMid:24592302.

59 Oliveira, R. N., Moreira, A. P. D., Thiré, R. M. S. M., Quilty, B., Passos, T. M., Simon, P., Mancini, M. C., & McGuinness, G. B. (2017). Absorbent polyvinyl alcohol-sodium carboxymethyl cellulose hydrogels for propolis delivery in wound healing applications. Polymer Engineering and Science, 57(11), 1224-1233. http://dx.doi.org/10.1002/pen.24500.

60 Huang, M.-H., & Yang, M.-C. (2008). Evaluation of glucan/poly(vinyl alcohol) blend wound dressing using rat models. International Journal of Pharmaceutics, 346(1-2), 38-46. http://dx.doi.org/10.1016/j.ijpharm.2007.06.021. PMid:17662545.

61 Wang, L.-C., Chen, X.-G., Zhong, D.-Y., & Xu, Q.-C. (2007). Study on poly(vinyl alcohol)/carboxymethyl-chitosan blend film as local drug delivery system. Journal of Materials Science: Materials in Medicine, 18(6), 1125-1133. http://dx.doi.org/10.1007/s10856-007-0159-5. PMid:17268861.

62 Ahmed, E. M. (2015). Hydrogel: preparation, characterization, and applications: a review. Journal of Advanced Research, 6(2), 105-121. http://dx.doi.org/10.1016/j.jare.2013.07.006. PMid:25750745.

63 Tahtat, D., Mahlous, M., Benamer, S., Nacer Khodja, A., Larbi Youcef, S., Hadjarab, N., & Mezaache, W. (2011). Influence of some factors affecting antibacterial activity of PVA/Chitosan based hydrogels synthesized by gamma irradiation. Journal of Materials Science: Materials in Medicine, 22(11), 2505-2512. http://dx.doi.org/10.1007/s10856-011-4421-5. PMid:21870082.

64 El-Naggar, A. W. M., Senna, M. M., Mostafa, T. A., & Helal, R. H. (2017). Radiation synthesis and drug delivery properties of interpenetrating networks (IPNs) based on poly(vinyl alcohol)/methylcellulose blend hydrogels. International Journal of Biological Macromolecules, 102, 1045-1051. http://dx.doi.org/10.1016/j.ijbiomac.2017.04.084. PMid:28450244.

65 Kamoun, E. A., Kenawy, E.-R. S., Tamer, T. M., El-Meligy, M. A., & Mohy Eldin, M. S. (2015). Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arabian Journal of Chemistry, 8(1), 38-47. http://dx.doi.org/10.1016/j.arabjc.2013.12.003.

66 Kenawy, E.-R., Kamoun, E. A., Mohy Eldin, M. S., & El-Meligy, M. A. (2014). Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arabian Journal of Chemistry, 7(3), 372-380. http://dx.doi.org/10.1016/j.arabjc.2013.05.026.

67 Lopez, C. G., Rogers, S. E., Colby, R. H., Graham, P., & Cabral, J. T. (2015). Structure of sodium carboxymethyl cellulose aqueous solutions: A SANS and rheology study. Journal of Polymer Science. Part B, Polymer Physics, 53(7), 492-501. http://dx.doi.org/10.1002/polb.23657. PMid:26709336.

68 Shi, C., Tao, F., & Cui, Y. (2018). New starch ester/gelatin based films: developed and physicochemical characterization. International Journal of Biological Macromolecules, 109, 863-871. http://dx.doi.org/10.1016/j.ijbiomac.2017.11.073. PMid:29137995.

69 Pereira, R. F., Carvalho, A., Gil, M. H., Mendes, A., & Bártolo, P. J. (2013). Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films. Carbohydrate Polymers, 98(1), 311-320. http://dx.doi.org/10.1016/j.carbpol.2013.05.076. PMid:23987350.

70 Bhowmick, S., & Koul, V. (2016). Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: synthesis, characterization and biological evaluation. Materials Science and Engineering C, 59, 109-119. http://dx.doi.org/10.1016/j.msec.2015.10.003. PMid:26652355.

71 Porayath, C., Suresh, M. K., Biswas, R., Nair, B. G., Mishra, N., & Pal, S. (2018). Autolysin mediated adherence of Staphylococcus aureus with fibronectin, gelatin and heparin. International Journal of Biological Macromolecules, 110, 179-184. http://dx.doi.org/10.1016/j.ijbiomac.2018.01.047. PMid:29398086.

72 Vijaya, K. K., & Nishteswar, K. (2012). Wound healing activity of honey: a pilot study. Ayu: an International Quarterly Journal of Research in Ayurveda, 33(3), 374-377. http://dx.doi.org/10.4103/0974-8520.108827. PMid:23723644.

73 Miorin, P. L., Levy, N. C., Jr., Custodio, A. R., Bretz, W. A., & Marcucci, M. C. (2003). Antibacterial activity of honey and propolis from Apis mellifera and Tetragonisca angustula against Staphylococcus aureus. Journal of Applied Microbiology, 95(5), 913-920. http://dx.doi.org/10.1046/j.1365-2672.2003.02050.x. PMid:14633019.

74 Giusto, G., Beretta, G., Vercelli, C., Valle, E., Iussich, S., Borghi, R., Odetti, P., Monacelli, F., Tramuta, C., Grego, E., Nebbia, P., Robino, P., Odore, R., & Gandini, M. (2018). Pectin-honey hydrogel: characterization, antimicrobial activity and biocompatibility. Bio-Medical Materials and Engineering, 29(3), 347-356. http://dx.doi.org/10.3233/BME-181730. PMid:29578463.

75 Zbuchea, A. (2014). Up to date use of honey for burns treatment. Annals of Burns and Fire Disasters, 27(1), 22-30. PMid:25249844.
 

6037b580a9539551df11f9d2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections