Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Synergistic effect of adding lignin and carbon black in poly(lactic acid)

Thaís Ferreira da Silva; Fernanda Menezes; Larissa Stieven Montagna; Ana Paula Lemes; Fabio Roberto Passador

Downloads: 0
Views: 312


Antistatic packaging is a very important sector since the electrostatic discharge of electronic devices can damage and/or disable these products. In addition, it is essential to dispose of this packaging correctly. In this work, the synergistic effect of the addition of lignin and carbon black on the development of antistatic and biodegradable packaging was verified. In this study, PLA was mixed with lignin and carbon black and the composites were prepared using a high-speed thermokinetic homogenizer where the melting of the PLA and the blend with fillers occurred by friction. The composites were characterized by Izod impact tests, scanning electron microscopy, thermal properties, electrical characterization and biodegradation tests in garden soil. The results show that lignin is a great option to accelerate the biodegradation of PLA in the garden soil and the carbon black acts as an antistatic agent reducing the electrical resistivity of the composites.


antistatic, biodegradable, poly(lactic acid), lignin, carbon black


1 Santos, M. S., Montagna, L. S., Rezende, M. C., & Passador, F. R. (2019). A new use for glassy carbon: development of LDPE/glassy carbon composites for antistatic packaging applications. Journal of Applied Polymer Science, 136(11), 1-8. http://dx.doi.org/10.1002/app.47204.

2 Mesquita, A. S., Silva, L. G. A., & Miranda, L. F. (2018). Mechanical, thermal and electrical properties of poly(ethylene terephthalate)-PET filled with carbon black. The Minerals. Metals & Materials Series, 1, 605-614. http://dx.doi.org/10.1007/978-3-319-72484-3_64.

3 Silva, T. F., Menezes, F., Montagna, L. S., Lemes, A. P., & Passador, F. R. (2019). Preparation and characterization of antistatic packaging for electronic components based on poly(lactic acid)/carbon black composites. Journal of Applied Polymer Science, 136(13), 1-8. http://dx.doi.org/10.1002/app.47273.

4 Macedo, J. R. N., Santos, D. J., & Santos Rosa, D. (2019). Poly(lactic acid)–thermoplastic starch–cotton composites: starch-compatibilizing effects and composite biodegradability. Journal of Applied Polymer Science, 136(21), 1-10. http://dx.doi.org/10.1002/app.47490.

5 Silva, L. N., Anjos, E. G. R., Morgado, G. F. M., Marini, J., Backes, E. H., Montagna, L. S., & Passador, F. R. (2019). Development of antistatic packaging of polyamide 6/linear low-density polyethylene blends-based carbon black composites. Polymer Bulletin. http://dx.doi.org/10.1007/s00289-019-02928-3.

6 Al-Saleh, M. H., & Sundararaj, U. (2008). An innovative method to reduce percolation threshold of carbon black immiscible polymer blends. Composites. Part A, Applied Science and Manufacturing, 39(2), 284-293. http://dx.doi.org/10.1016/j.compositesa.2007.10.010.

7 Chen, Y., Yao, J., Xu, M.-K., Jiang, Z.-G., & Zhang, H.-B. (2019). Electrically conductive and flame retardant graphene/brominated polystyrene/maleic anhydride grafted high density polyethylene nanocomposites with satisfactory mechanical properties. Chinese Journal of Polymer Science, 37(5), 509-517. http://dx.doi.org/10.1007/s10118-019-2220-5.

8 Franchetti, S. M. M., & Marconato, J. C. (2006). Polímeros biodegradáveis: uma solução parcial para diminuir a quantidade dos resíduos plásticos. Química Nova, 29(4), 811-816. http://dx.doi.org/10.1590/S0100-40422006000400031.

9 Silva, T. F., Menezes, F., Montagna, L. S., Lemes, A. P., & Passador, F. R. (2019). Effect of lignin as accelerator of the biodegradation process of poly(lactic acid)/lignin composites. Materials Science and Engineering B, 251, 114441. http://dx.doi.org/10.1016/j.mseb.2019.114441.

10 Fan, T., Ye, W., Du, B., Zhang, Q., Gong, L., Li, J., & Liu, Q. (2019). Effect of segment structures on the hydrolytic degradation behaviors of totally degradable poly(L-lactic acid)-based copolymers. Journal of Applied Polymer Science, 136(33), 47887. http://dx.doi.org/10.1002/app.47887.

11 Iovino, R., Zullo, R., Rao, M. A., Cassar, L., & Gianfreda, L. (2008). Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation & Stability, 93(1), 147-157. http://dx.doi.org/10.1016/j.polymdegradstab.2007.10.011.

12 Song, R., Murphy, M., Li, C., Ting, K., Soo, C., & Zheng, Z. (2018). Current development of biodegradable polymeric materials for biomedical applications. Drug Design, Development and Therapy, 12, 3117-3145. http://dx.doi.org/10.2147/DDDT.S165440. PMid:30288019.

13 Fechine, G. J. M. (2010). A era dos polímeros biodegradáveis. Plástico, 42, 423. Retrieved in 2019, August 28, from https://www.plastico.com.br/tecnica-a-era-dos-polimeros-biodegradaveis

14 Rane, A. V., Kanny, K., Mathew, A., Mohan, T. P., & Thomas, S. (2019). Comparative analysis of processing techniques’ effect on the strength of carbon black (n220)-filled poly(lactic acid) composites. Strength of Materials, 51(3), 476-489. http://dx.doi.org/10.1007/s11223-019-00093-6.

15 Gindl-Altmutter, W., Fürst, C., Mahendran, A., Obersriebnig, M., Emsenhuber, G., Kluge, M., Veigel, S., Keckes, J., & Liebner, F. (2015). Electrically conductive kraft lignin-based carbon filler for polymers. Carbon, 89, 161-168. http://dx.doi.org/10.1016/j.carbon.2015.03.042.

16 Gordobil, O., Delucis, R., Egüés, I., & Labidi, J. (2015). Kraft lignin as filler in PLA to improve ductility and thermal properties. Industrial Crops and Products, 72, 46-53. http://dx.doi.org/10.1016/j.indcrop.2015.01.055.

17 Rezende, C. A., & Duek, E. A. R. (2005). Blendas de poli (ácido lático-co-ácido glicólico)/ poli (ácido lático): degradação in vitro. Polímeros: Ciência e Tecnologia, 13(1), 36-44. http://dx.doi.org/10.1590/S0104-14282003000100009.

18 American Society for Testing and Materials – ASTM. (2003). ASTM G160-98: standard practice for evaluating microbial susceptibility of nonmetallic: materials by Laboratory Soil Burial. West Conshohocken: ASTM.

19 American Society for Testing and Materials – ASTM. (2015). ASTM D256-78: standard test methods for determining the izod pendulum impact resistance of plastics: materials by Laboratory Soil Burial. West Conshohocken: ASTM.

20 Zhao, Y.-Q., Cheung, H.-Y., Lau, K.-T., Xu, C.-L., Zhao, D.-D., & Li, H.-L. (2010). Silkworm silk/poly(lactic acid) biocomposites: dynamic mechanical, thermal and biodegradable properties. Polymer Degradation & Stability, 95(10), 1978-1987. http://dx.doi.org/10.1016/j.polymdegradstab.2010.07.015.

21 Kumar Singla, R., Maiti, S. N., & Ghosh, A. K. (2016). Crystallization, morphological, and mechanical response of poly(lactic acid)/lignin-based biodegradable composites. Polymer-Plastics Technology and Engineering, 55(5), 475-485. http://dx.doi.org/10.1080/03602559.2015.1098688.

22 Mosnáčková, K., Danko, M., Šišková, A., Falco, L. M., Janigová, I., Chmela, Š., Vanovčanová, Z., Omaníková, L., Chodák, I., & Mosnáček, J. (2017). Complex study of the physical properties of a poly(lactic acid)/poly(3-hydroxybutyrate) blend and its carbon black composite during various outdoor and laboratory ageing conditions. RSC Advances, 7(74), 47132-47142. http://dx.doi.org/10.1039/C7RA08869H.

23 Qin, L., Qiu, J., Liu, M., Ding, S., Shao, L., Lü, S., Zhang, G., Zhao, Y., & Fu, X. (2011). Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chemical Engineering Journal, 166(2), 772-778. http://dx.doi.org/10.1016/j.cej.2010.11.039.

24 Pereira, R. B., & Morales, A. R. (2014). Estudo do comportamento térmico e mecânico do PLA modificado com aditivo nucleante e modificador de impacto TT. Polímeros: Ciência e Tecnologia, 24(2), 198-202. http://dx.doi.org/10.4322/polimeros.2014.042.

25 Liu, X., Zou, Y., Cao, G., & Luo, D. (2007). The preparation and properties of biodegradable polyesteramide composites reinforced with nano-CaCO3 and nano-SiO2. Materials Letters, 61(19–20), 4216-4221. http://dx.doi.org/10.1016/j.matlet.2007.01.065.

26 Mathew, A. P., Oksman, K., & Sain, M. (2006). The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. Journal of Applied Polymer Science, 101(1), 300-310. http://dx.doi.org/10.1002/app.23346.

27 Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B. (2012). Poly(lactic acid) crystallization. Progress in Polymer Science, 37(12), 1657-1677. http://dx.doi.org/10.1016/j.progpolymsci.2012.07.005.

28 Sangha, A. K., Parks, J. M., Standaert, R. F., Ziebell, A., Davis, M., & Smith, J. C. (2012). Radical coupling reactions in lignin synthesis: A density functional theory study. The Journal of Physical Chemistry B, 116(16), 4760-4768. http://dx.doi.org/10.1021/jp2122449. PMid:22475051.

29 Arruda, L. C., Magaton, M., Bretas, R. E. S., & Ueki, M. M. (2015). Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polymer Testing, 43(1), 27-37. http://dx.doi.org/10.1016/j.polymertesting.2015.02.005.

30 Kanbur, Y., & Kuçukyavuz, Z. (2009). Electrical and mechanical properties of polypropylene/carbon black composites. Journal of Reinforced Plastics and Composites, 28(18), 2251-2260. http://dx.doi.org/10.1177/0731684408092378.

31 Ma, P. M., Wang, R. Y., Wang, S. F., Zhang, Y., Zhang, Y. X., & Hristova, D. (2008). Effects of fumed silica on the cr/ystallization behavior and thermal properties of poly(hydroxybutyrate-co-hydroxyvalerate). Journal of Applied Polymer Science, 108(3), 1770-1777. http://dx.doi.org/10.1002/app.27577.

32 Bismarck, A., Aranberri-Askargorta, I., Springer, J., Lampke, T., Wielage, B., Stamboulis, A., Shenderovich, I., & Limbach, H.-H. (2002). Surface characterization of flax, hemp and cellulose fibers: surface properties and the water uptake behavior. Polymer Composites, 23(5), 872-894. http://dx.doi.org/10.1002/pc.10485.

33 Litauszki, K., Kovács, Z., Mészáros, L., & Kmetty, A. (2019). Accelerated photodegradation of poly(lactic acid) with weathering test chamber and laser exposure: a comparative stud. Polymer Testing, 76, 411-419. http://dx.doi.org/10.1016/j.polymertesting.2019.03.038.

34 Grigull, V. H., Mazur, L. P., Garcia, M. C. F., Schneider, A. L. S., & Pezzin, A. P. T. (2015). Estudo da degradação de blendas de poli(hidroxibutirato-cohidroxivalerato)/poli(l-ácido lático) em diferentes condições ambientais. Engevista, 17(4), 444-462. http://dx.doi.org/10.22409/engevista.v17i4.773.

35 Garlotta, D. (2001). A literature review of poly(lactic acid). Journal of Polymers and the Environment, 9(2), 63-84. http://dx.doi.org/10.1023/A:1020200822435.

36 Yu, T., Ren, J., Li, S., Yuan, H., & Li, Y. (2010). Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Composites. Part A, Applied Science and Manufacturing, 41(4), 499-505. http://dx.doi.org/10.1016/j.compositesa.2009.12.006.

37 Montagna, L. S., Montanheiro, T. L. A., Borges, A. C., Koga-Ito, C. Y., Lemes, A. P., & Rezende, M. C. (2016). Biodegradation of PHBV/GNS nanocomposites by Penicillium funiculosum. Journal of Applied Polymer Science, 134, 44234.

38 Faria, A. U., & Martins-Franchetti, S. M. (2010). Biodegradação de filmes de polipropileno (PP), poli(3-hidroxibutirato) (PHB) e blenda de PP/PHB por microrganismos das águas do Rio Atibaia. Polímeros: Ciência e Tecnologia, 20(2), 141-147. http://dx.doi.org/10.1590/S0104-14282010005000024.

39 Ohkita, T., & Lee, S.-H. (2006). Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. Journal of Applied Polymer Science, 100(4), 3009-3017. http://dx.doi.org/10.1002/app.23425.

40 Harmaen, A. S., Khalina, A., Azowa, I., Hassan, M. A., Tarmian, A., & Jawaid, M. (2015). Thermal and biodegradation properties of poly(lactic acid)/fertilizer/oil palm fibers blends biocomposites. Polymer Composites, 36(3), 576-583. http://dx.doi.org/10.1002/pc.22974.

5f10878c0e8825c36f5a5964 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections