Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

The effect of extrusion processing on the physicochemical and antioxidant properties of fermented and non-fermented Jabuticaba pomace

Eduardo Ramirez Asquieri; Jose de Jesus Berrios; Elaine Meire de Assis Ramirez Asquieri; James Pan; Aline Gomes de Moura e Silva; Rayssa Dias Batista

Downloads: 0
Views: 204


Previous studies have proven that the flour obtained from the residue of Jabuticaba (Jab) juice and wine industries is source of bioactive compounds and an option for the production of food such as extrudates. The objective of this work was to produce extrudates with different concentrations (0, 5, 10, 15, 20%) of non-fermented and fermented Jab pomace flour, as well as to evaluate their physical, chemical and technological properties and the effect of the extrusion process on the antioxidant capacity. Results showcased that the extrudates have low content of resistant starch (0.26 g/100 g) and extrusion conditions decreased the content of polyphenols and antioxidant potential. The addition of 20% non-fermented Jab pomace reached an antioxidant activity of 2904 µg trolox/g in the DPPH method, and promoted rheological changes in the product, such as lower expansion index, higher density and hardness; while presenting higher phenolic content and antioxidant capacity.



extrudates, Myrciaria cauliflora, peels, polyphenols, seeds


1 Ferreira, M. N., Silva, F. A., Damiani, C., Silva, E. P., & Costa, F. S. (2018). Caracterização física e química de polpa de jabuticaba. Revista Agrotecnologia, 9(1), 81-87. https://doi.org/10.12971/2179-5959/agrotecnologia.v9n1p81-87.

2 Asquieri, E. R., Silva, A. G. M., & Cândido, M. A. (2009). Aguardente de jabuticaba obtida da casca e borra da fabricação de fermentado de jabuticaba. Food Science and Technology (Campinas), 29(4), 896-904. http://dx.doi.org/10.1590/S0101-20612009000400030.

3 Borges, L. L., Martins, F. S., Conceição, E. C., & Silveira, D. (2017). Optimization of the spray-drying process for developing Jab subproduct powder employing response surface methodology. Journal of Food Process Engineering, 40(1), 1-9. http://dx.doi.org/10.1111/jfpe.12276.

4 Leite-Legatti, A. V., Batista, Â. G., Dragano, N. R. V., Marques, A. C., Malta, L. G., Riccio, M. F., Eberlin, M. N., Machado, A. R. T., de Carvalho-Silva, L. B., Ruiz, A. L. T. G., de Carvalho, J. E., Pastore, G. M., & Maróstica, M. R., Jr. (2012). Jaboticaba peel: antioxidant compounds, antiproliferative and antimutagenic activities. Food Research International, 49(1), 596-603. http://dx.doi.org/10.1016/j.foodres.2012.07.044.

5 Torres-León, C., Ramírez-Guzman, N., Londoño-Hernandez, L., Martinez-Medina, G. A., Díaz-Herrera, R., Navarro-Macias, V., Alvarez-Pérez, O. B., Picazo, B., Villarreal-Vázquez, M., Ascacio-Valdes, J., & Aguilar, C. N. (2018). Food waste and byproducts: an opportunity to minimize malnutrition and hunger in developing countries. Frontiers in Sustainable Food Systems, 2(52), 1-17. http://dx.doi.org/10.3389/fsufs.2018.00052.

6 Zeng, Z., Luo, S., Liu, C., Hu, X., Gong, E., & Miao, J. (2018). Phenolic retention of brown rice after extrusion with mesophilic α-amylase. Food Bioscience, 21, 8-13. http://dx.doi.org/10.1016/j.fbio.2017.10.008.

7 Dalbhagat, C. G., Mahato, D. K., & Mishra, H. N. (2019). Effect of extrusion processing on physicochemical, functional and nutritional characteristics of rice and rice-based products: a review. Trends in Food Science & Technology, 85, 226-240. http://dx.doi.org/10.1016/j.tifs.2019.01.001.

8 Morales, P., Barros, L., Dias, M. I., Santos-Buelga, C., Ferreira, I. C. F. R., Asquieri, E. R., & Berrios, J. de J. (2016). Non-fermented and fermented Jab (Myrciaria cauliflora Mart.) pomaces as valuable sources of functional ingredientes. Food Chemistry, 208, 220-227. https://doi.org/10.1016/j.foodchem.2016.04.011.

9 Association of Official Analytical Chemists – AOAC. (2005). Official methods of analysis (16th ed). Washington, DC: AOAC.

10 American Association of Cereal Chemists – AACC. (2000). Approved methods of the American Association of Cereal Chemists (10th ed.). Palm Harbor: AACC.

11 Swain, T., & Hillis, W. E. (1959). The phenolics constituents of Prunus domestica. I. The quantitative analysis of phenolics constituents. Journal of the Science of Food and Agriculture, 10(1), 63-68. http://dx.doi.org/10.1002/jsfa.2740100110.

12 Brand-Williams, W., Cuvelier, M., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. FLWT - Food Science and Technology, 28(1), 25-30. http://dx.doi.org/10.1016/S0023-6438(95)80008-5.

13 Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2003). Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweetpotato. Journal of Agricultural and Food Chemistry, 51(11), 3313-3319. http://dx.doi.org/10.1021/jf034109c. PMid:12744660.

14 Fernando Reyes, L., Emilio Villarreal, J., & Cisneros-Zevallos, L. (2007). The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chemistry, 101(3), 1254-1262. http://dx.doi.org/10.1016/j.foodchem.2006.03.032.

15 Faubion, J. M., Hoseney, R. C., & Seib, P. A. (1982). Functionability of grain components in extrusion. Cereal Foods World, 27, 212-216.

16 Patil, R. T., Berrios, J. de J., Tang, J., & Swanson, B. G. (2007). Evaluate on of methods for expansion - Properties of legume extrudates. Applied Engineering in Agriculture, 23(6), 777-783. http://dx.doi.org/10.13031/2013.24044.

17 Ali, Y., Hanna, M. A., & Chinnaswamy, R. (1996). Expansion characteristics of extrudate corn grits. Lebensmittel-Wissenschaft + Technologie, 29(8), 702-707. http://dx.doi.org/10.1006/fstl.1996.0109.

18 Batey, I. L., Curtin, B. M., & Moore, S. A. (1997). Optimization of rapid-visco analyser test conditions for predicting Asian noodle quality. Cereal Chemistry, 74(4), 497-501. http://dx.doi.org/10.1094/CCHEM.1997.74.4.497.

19 Bhuwan Pandit, R., Tang, J., Liu, F., & Mikhaylenko, G. (2007). A computer vision method to locate cold spots in foods in microwave sterilization processes. Pattern Recognition, 40(12), 3667-3676. http://dx.doi.org/10.1016/j.patcog.2007.03.021.

20 Berrios, J. de J., Morales, P., Cámara, M., Sánchez-Mata, M. C. (2010). Carbohydrate composition of raw and extrudate pulse flours. Food Research International, 43(2), 531-536. https://doi.org/10.1016/j.foodres.2009.09.035.

21 Morales, P., Cebadera-Miranda, L., Cámara, R. M., Reis, F. S., Barros, L., Berrios, J. de J., Ferreira, I. C. F. R., & Cámara, M. (2015). Lentil flour formulations to develop new snack-type products by extrusion processing: phytochemicals and antioxidant capacity. Journal of Functional Foods, 19, 537-544. http://dx.doi.org/10.1016/j.jff.2015.09.044.

22 Adebo, O. A., & Gabriela Medina-Meza, I. (2020). Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: a mini review. Molecules (Basel, Switzerland), 25(4), 927. http://dx.doi.org/10.3390/molecules25040927. PMid:32093014.

23 Lohani, U. C., & Muthukumarappan, K. (2017). Effect of extrusion processing parameterson antioxidant, textural and functional propertiesof hydrodynamic cavitate d corn flour, sorghumflour and apple pomace-based extrudates. Journal of Food Process Engineering, 40(3), 1-15. http://dx.doi.org/10.1111/jfpe.12424.

24 Azeredo, H. M. C. (2005). Encapsulação: aplicação à tecnologia de alimentos. Alimentos e Nutrição, 16(1), 89-97.

25 Wang, J., Jin, Z., & Yuan, X. (2007). Preparation of resistant starch from starch guar gum extrudates and their properties. Food Chemistry, 101(1), 20-25. http://dx.doi.org/10.1016/j.foodchem.2006.01.005.

26 Tanpong, S., Cherdthong, A., Tengjaroenkul, B., Tengjaroenkul, U., & Wongtangtintharn, S. (2019). Evaluation of physical and chemical properties of citric acid industrial waste. Tropical Animal Health and Production, 51(8), 2167-2174. http://dx.doi.org/10.1007/s11250-019-01917-y. PMid:31098792.

27 Ascheri, D. P. R. A., Andrade, C. T., Carvalho, C. W. P., & Ascheri, J. L. R. (2006). Production of pre-gelatinized flours from rice and Jab bagasse: effect of extrusion variables on the paste properties. Boletim CEPPA, 24, 115-144.

28 Sayanjali, S., Sanguansri, L., Ying, D., Buckow, R., Gras, S., & Augustin, M. A. (2019). Extrusion of a curcuminoid-enriched oat fiber-corn-based snack product. Journal of Food Science, 84(2), 284-291. http://dx.doi.org/10.1111/1750-3841.14432. PMid:30648743.

29 Beck, S. M., Knoerzer, K., Foerster, M., Mayo, S., Philipp, C., & Arcot, J. (2018). Low moisture extrusion of pea protein and pea fibre fortified rice starch blends. Journal of Food Engineering, 231, 61-71. http://dx.doi.org/10.1016/j.jfoodeng.2018.03.004.

30 Pitts, K. F., McCann, T. H., Mayo, S., Favaro, J., & Day, L. (2016). Effect of the sugar replacement by citrus fibre on the physical and structural properties of wheat-corn based extrudates. Food and Bioprocess Technology, 9(11), 1803-1811. http://dx.doi.org/10.1007/s11947-016-1764-4.

31 Silva, E. M. M., Ascheri, J. L. R., & Ascheri, D. P. R. (2016). Quality assessment of gluten-free pasta prepared with a brown rice and corn meal blend via thermoplastic extrusion. Lebensmittel-Wissenschaft + Technologie, 68, 698-706. http://dx.doi.org/10.1016/j.lwt.2015.12.067.

32 Nayak, B., Berrios, J. de J., Powers, J. R., & Tang, J. (2011). Effect of extrusion on the antioxidant capacity and color attributes of expanded extrudates prepared from purple potato and yellow pea flour mixes. Journal of Food Science, 76(6), C874-C883. http://dx.doi.org/10.1111/j.1750-3841.2011.02279.x. PMid:22417485.

6085bd80a9539542546336e2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections