Evaluation of commercial arrowroot starch/CMC film for buccal drug delivery of glipizide
Gayathri, Dhanasekaran; Jayakumari, Lakshmanan Saraswathy
Abstract
Keywords
References
1 Meher, J. G., Tarai, M., Yadav, N. P., Patnaik, A., Mishra, P., & Yadav, K. S. (2013). Development and characterization of cellulose–polymethacrylate mucoadhesive film for buccal delivery of carvedilol. Carbohydrate Polymers, 96(1), 172-180. http://dx.doi.org/10.1016/j.carbpol.2013.03.076. PMid:23688467.
2 Khan, S., Trivedi, V., & Boateng, J. (2016). Functional physico-chemical, ex vivo permeation and cell viability characterization of omeprazole loaded buccal films for paediatric drug delivery. International Journal of Pharmaceutics, 500(1-2), 217-226. http://dx.doi.org/10.1016/j.ijpharm.2016.01.045. PMid:26802493.
3 Sabale, V., Paranjape, A., Patel, V., & Sabale, P. (2017). Characterization of natural polymers from jackfruit pulp, calendula flowers and tara seeds as mucoadhesive and controlled release components in buccal tablets. International Journal of Biological Macromolecules, 95, 321-330. http://dx.doi.org/10.1016/j.ijbiomac.2016.11.078. PMid:27889336.
4 Pendekal, M. S., & Tegginamat, P. K. (2012). Formulation and evaluation of a bioadhesive patch for buccal delivery of tizanidine. Acta Pharmaceutica Sinica. B, 2(3), 318-324. http://dx.doi.org/10.1016/j.apsb.2011.12.012.
5 Sarojini S. (2016). Formulation development of Olmesartan Medoxomil Mucoadhesive buccal film. Asian Journal of Pharmaceutical Sciences, 10(4), 510-517. https://doi.org/10.22377/ajp.v10i04.886.
6 Khan, S., Boateng, J. S., Mitchell, J., & Trivedi, V. (2015). Formulation, characterisation and stabilisation of buccal films for paediatric drug delivery of omeprazole. AAPS PharmSciTech, 16(4), 800-810. http://dx.doi.org/10.1208/s12249-014-0268-7. PMid:25559373.
7 Gök, M. K., Ozgumuş, S., Demir, K., Cirit, U., Pabuccuoglu, S., Cevher, E., Ozsoy, Y., & Bacınoglu, S. (2016). Development of starch based mucoadhesive vaginal drug delivery systems for application in veterinary medicine. Carbohydrate Polymers, 136, 63-70. http://dx.doi.org/10.1016/j.carbpol.2015.08.079. PMid:26572329.
8 Semalty, M., Semalty, A., & Kumar, G. (2008). Formulation and characterization of mucoadhesive buccal films of glipizide. Indian Journal of Pharmaceutical Sciences, 70(1), 43-48. http://dx.doi.org/10.4103/0250-474X.40330. PMid:20390079.
9 Kraisit, P., Limmatvapirat, S., Luangtana-Anan, M., & Sriamornsak, P. (2017). Buccal administration of mucoadhesive blend films saturated with propranolol loaded nanoparticles. Asian Journal of Pharmaceutical Sciences, 13(1), 34-43. http://dx.doi.org/10.1016/j.ajps.2017.07.006. PMid:32104376.
10 Nazari, K., Kontogiannidou, E., Ahmad, R. H., Andreadis, D., Rasekh, M., Bouropoulos, N., van Der Merwe, S. M., Chang, M. W., Fatouros, D. G., & Ahmad, Z. (2017). Fibrous polymeric buccal film formulation, engineering and bio-interface assessment. European Polymer Journal, 97, 147-172. http://dx.doi.org/10.1016/j.eurpolymj.2017.09.046.
11 Ch’ng, H. S., Park, H., Kelly, P., & Robinson, J. R. (1985). Bioadhesive polymers as platforms for oral controlled drug delivery II: synthesis and evaluation of some swelling, water‐insoluble bioadhesive polymers. Journal of Pharmaceutical Sciences, 74(4), 399-405. http://dx.doi.org/10.1002/jps.2600740407. PMid:3998999.
12 Ahuja, A., Khar, R. K., & Ali, J. (1997). Mucoadhesive drug delivery systems. Drug Development and Industrial Pharmacy, 23(5), 489-515. http://dx.doi.org/10.3109/03639049709148498.
13 Okeke, O. C., & Boateng, J. S. (2016). Composite HPMC and sodium alginate based buccal formulations for nicotine replacement therapy. International Journal of Biological Macromolecules, 91, 31-44. http://dx.doi.org/10.1016/j.ijbiomac.2016.05.079. PMid:27222284.
14 Dekina, S., Romanovska, I., Ovsepyan, A., Tkach, V., & Muratov, E. (2016). Gelatin/carboxymethyl cellulose mucoadhesive films with lysozyme: Development and characterization. Carbohydrate Polymers, 147, 208-215. http://dx.doi.org/10.1016/j.carbpol.2016.04.006. PMid:27178926.
15 Diaz del Consuelo, I., Falson, F., Guy, R. H., & Jacques, Y. (2007). Ex vivo evaluation of bioadhesive films for buccal delivery of fentanyl. Journal of Controlled Release, 122(2), 135-140. http://dx.doi.org/10.1016/j.jconrel.2007.05.017. PMid:17688966.
16 Kumar, V., & Banker, G. S. (1993). Chemically-modified celldlosic polymers. Drug Development and Industrial Pharmacy, 19(1-2), 1-31. http://dx.doi.org/10.3109/03639049309038760.
17 Eouani, C., Piccerelle, P., Prinderre, P., Bourret, E., & Joachim, J. (2001). In-vitro comparative study of buccal mucoadhesive performance of different polymeric films. European Journal of Pharmaceutics and Biopharmaceutics, 52(1), 45-55. http://dx.doi.org/10.1016/S0939-6411(01)00146-1. PMid:11438423.
18 Duchene, D., Touchard, F., & Peppas, N. A. (1998). Pharmaceutical and medical aspects of bioadhesive systems for drug administration. Drug Development and Industrial Pharmacy, 14(1), 283-318. http://dx.doi.org/10.3109/03639048809151972.
19 Mortazavi, S. A., Carpenter, B. G., & Smart, J. D. (1993). A comparative study on the role played by mucus glycoproteins in the rheological behaviour of the mucoadhesive/mucosal interface. International Journal of Pharmaceutics, 94(1-3), 195-201. http://dx.doi.org/10.1016/0378-5173(93)90024-A.
20 Russo, E., Selmin, F., Baldassari, S., Gennari, C. G., Caviglioli, G., Cilurzo, F., Minghetti, P., & Parodi, B. (2016). A focus on mucoadhesive polymers and their application in buccal dosage forms. Journal of Drug Delivery Science and Technology, 32, 113-125. http://dx.doi.org/10.1016/j.jddst.2015.06.016.
21 Parodi, B., Russo, E., Gatti, P., Cafaggi, S., & Bignardi, G. (1999). Development and in vitro evaluation of buccoadhesive tablets using a new mode substrate for bioadhesion measures: The eggshell membrane. Drug Development and Industrial Pharmacy, 25(3), 289-295. http://dx.doi.org/10.1081/DDC-100102173. PMid:10071821.
22 Xie, F., Halley, P. J., & Avérous, L. (2012). Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Progress in Polymer Science, 37(4), 595-623. http://dx.doi.org/10.1016/j.progpolymsci.2011.07.002.
23 Xiao, H., Yang, T., Lin, Q., Liu, G. Q., Zhang, L., Yu, F., & Chen, Y. (2016). Acetylated starch nanocrystals: preparation and antitumor drug delivery study. International Journal of Biological Macromolecules, 89, 456-464. http://dx.doi.org/10.1016/j.ijbiomac.2016.04.037. PMid:27156696.
24 Koch, K., Gillgren, T., Stading, M., & Andersson, R. (2010). Mechanical and structural properties of solution-cast high-amylose maize starch films. International Journal of Biological Macromolecules, 46(1), 13-29. http://dx.doi.org/10.1016/j.ijbiomac.2009.10.002. PMid:19828118.
25 Borges, A. F., Silva, C., Coelho, J. F., & Simões, S. (2015). Oral films: current status and future perspectives: I—galenical development and quality attributes. Journal of Controlled Release, 206, 1-19. http://dx.doi.org/10.1016/j.jconrel.2015.03.006. PMid:25747406.
26 Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., Sriburi, P., & Rachtanapun, P. (2011). Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chemistry Central Journal, 5(1), 6. http://dx.doi.org/10.1186/1752-153X-5-6. PMid:21306655.
27 Ghanbarzadeh, B., Almasi, H., & Entezami, A. (2011). Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Industrial Crops and Products, 33(1), 229-235. http://dx.doi.org/10.1016/j.indcrop.2010.10.016.
28 Kibar, E. A., & Us, F. (2013). Thermal, mechanical and water adsorption properties of corn starch–carboxymethylcellulose/methylcellulose biodegradable films. Journal of Food Engineering, 114(1), 123-13. http://dx.doi.org/10.1016/j.jfoodeng.2012.07.034.
29 Ghanbarzadeh, B., Almasi, H., & Entezami, A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative Food Science & Emerging Technologies, 11(4), 697-702. http://dx.doi.org/10.1016/j.ifset.2010.06.001.
30 Gu, Q., Wang, C., Wang, G., Han, Z., Li, Y., Wang, X., Li, J., Qi, C., Xu, T., Yang, X., & Wang, L. (2015). Glipizide suppresses embryonic vasculogenesis and angiogenesis through targeting natriuretic peptide receptor A. Experimental Cell Research, 33(2), 261-272. http://dx.doi.org/10.1016/j.yexcr.2015.03.012. PMid:25823921.
31 Seenivasan, P., Chowdary, K. P., Reddy, C. U., & Murthy, J. S. (2013). Design and evaluation of glipizide CR tablets employing starch acetate as rate controlling matrix former. Journal of Pharmacy Research, 6(6), 653-655. http://dx.doi.org/10.1016/j.jopr.2013.06.013.
32 Sankalia, J. M., Sankalia, M. G., & Mashru, R. C. (2008). Drug release and swelling kinetics of directly compressed glipizide sustained-release matrices: establishment of level A IVIVC. Journal of Controlled Release, 129(1), 49-58. http://dx.doi.org/10.1016/j.jconrel.2008.03.016. PMid:18456362.
33 Chowdary, K. R., Rao, N. K., & Malathi, K. (2004). Ethyl cellulose microspheres of glipizide: Characterization, in vitro and in vivo evaluation. Indian Journal of Pharmaceutical Sciences, 66(4), 412-416.
34 International Organization for Standardization – ISO. (2007). ISO 6647-2. Rice – Determination of Amylose Content – Part 2: Routine Methods. Geneva: ISO.
35 Gajdosova, M., Vetchy, D., Dolezel, P., Gajdziok, J., Landova, H., Muselík, J., Zeman, J., Knotek, Z., Hauptman, K., & Jekl, V. (2016). Evaluation of mucoadhesive oral films containing nystatin. Journal of Applied Biomedicine, 14(4), 247-256. http://dx.doi.org/10.1016/j.jab.2016.05.002.
36 Nair, A. B., Kumria, R., Harsha, S., Attimarad, M., Al-Dhubiab, B. E., & Alhaider, I. A. (2013). In vitro techniques to evaluate buccal films. Journal of Controlled Release, 166(1), 10-21. http://dx.doi.org/10.1016/j.jconrel.2012.11.019. PMid:23219961.
37 Li, X. Q., Ye, Z. M., Wang, J. B., Fan, C. R., Pan, A. W., Li, C., & Zhang, R. B. (2017). Mucoadhesive buccal films of tramadol for effective pain management. Revista Brasileira de Anestesiologia, 67(3), 231-237. http://dx.doi.org/10.1016/j.bjan.2016.10.006. PMid:27899200.
38 Davidovich-Pinhas, M., & Bianco-Peled, H. (2010). Mucoadhesion: a review of characterization techniques. Expert Opinion on Drug Delivery, 7(2), 259-271. http://dx.doi.org/10.1517/17425240903473134. PMid:20095946.
39 Hunt, J. A., Joshi, H. N., Stella, V. J., & Topp, E. M. (1990). Diffusion and drug release in polymer films prepared from ester derivatives of hyaluronic acid. Journal of Controlled Release, 12(2), 159-169. http://dx.doi.org/10.1016/0168-3659(90)90092-8.
40 Cao, N., Yang, X., & Fu, Y. (2009). Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocolloids, 23(3), 729-735. http://dx.doi.org/10.1016/j.foodhyd.2008.07.017.
41 Karki S., Kim H., Na S.J., Shin D., Jo K., Lee J. (2016). Thin films as an emerging platform for drug delivery. Asian Journal of Pharmaceutical Sciences, 11(5), 559-574. https://doi.org/10.1016/j.ajps.2016.05.004.
42 Shidhaye, S. S., Saindane, N. S., Sutar, S., & Kadam, V. (2008). Mucoadhesive bilayered patches for administration of sumatriptan succinate. AAPS PharmSciTech, 9(3), 909-916. http://dx.doi.org/10.1208/s12249-008-9125-x. PMid:18679806.
43 Peppas, N. A., Bures, P., Leobandung, W., & Ichikawa, H. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 27-46. http://dx.doi.org/10.1016/S0939-6411(00)00090-4. PMid:10840191.
44 Baranowski, P., Karolewicz, B., Gajda, M., & Pluta, J. (2014). Ophthalmic drug dosage forms: characterisation and research methods. TheScientificWorldJournal, 2014, 1-14. http://dx.doi.org/10.1155/2014/861904. PMid:24772038.
45 Panomsuk, S. P., Hatanaka, T., Aiba, T., Katayama, K., & Koizumi, T. (1996). A study of the hydrophilic cellulose matrix: effect of drugs on swelling properties. Chemical & Pharmaceutical Bulletin, 44(5), 1039-1042. http://dx.doi.org/10.1248/cpb.44.1039.
46 Mali, S., Sakanaka, L. S., Yamashita, F., & Grossmann, M. V. (2005). Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers, 60(3), 283-289. http://dx.doi.org/10.1016/j.carbpol.2005.01.003.
47 Reddy, J. R., Muzib, Y. I., & Chowdary, K. P. (2013). Development and in-vivo characterization of novel trans buccal formulations of Amiloride hydrochloride. Journal of Pharmacy Research, 6(6), 647-652. http://dx.doi.org/10.1016/j.jopr.2013.04.051.
48 Bhyan, B., Jangra, S., Kaur, M., & Singh, H. (2011). Orally fast dissolving films: innovations in formulation and technology. International Journal of Pharmaceutical Sciences Review and Research, 9(2), 50-57.
49 Duan, X., Han, Y., Li, Y., & Chen, Y. (2014). Improved capacity retention of low cost sulfur cathodes enabled by a novel starch binder derived from food. RSC Advances, 4(105), 60995-61000. http://dx.doi.org/10.1039/C4RA10953H.
50 Irfan, M., Rabel, S., Bukhtar, Q., Qadir, M. I., Jabeen, F., & Khan, A. (2016). Orally disintegrating films: a modern expansion in drug delivery system. Saudi Pharmaceutical Journal, 24(5), 537-546. http://dx.doi.org/10.1016/j.jsps.2015.02.024. PMid:27752225.
51 Joshi A. S., Patil C. C., Shiralashetti S. S., Kalyane N. V. (2013). Design, characterization and evaluation of Eudragit microspheres containing glipizide. Drug Invention Today, 5(3), 229-234. https://doi.org/10.1016/j.dit.2013.06.009.
52 Sandoval Gordillo, C. A., Valencia, G. A., Vargas Zapata, R. A., & Agudelo Henao, A. C. (2014). Physicochemical characterization of arrowroot starch (Maranta arundinacea linn) and glycerol/arrowroot starch membranes. International Journal of Food Engineering, 10(4), 727-735. http://dx.doi.org/10.1515/ijfe-2014-0122.
53 Biswal, D. R., & Singh, R. P. (2004). Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydrate Polymers, 57(4), 379-387. http://dx.doi.org/10.1016/j.carbpol.2004.04.020.
54 Jiménez-castellanos, M. R., Zia, H., & Rhodes, C. T. (1993). Mucoadhesive drug delivery systems. Drug Development and Industrial Pharmacy, 19(1-2), 143-194. http://dx.doi.org/10.3109/03639049309038765.
55 Jimenez-Castellanos, M. R., Zia, H., & Rhodes, C. T. (1993). Assessment of an in vitro method for measuring the bioadhesiveness of tablets. International Journal of Pharmaceutics, 89(3), 223-228. http://dx.doi.org/10.1016/0378-5173(93)90247-D.