Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.06619
Polímeros: Ciência e Tecnologia
Original Article

Evaluation of commercial arrowroot starch/CMC film for buccal drug delivery of glipizide

Gayathri, Dhanasekaran; Jayakumari, Lakshmanan Saraswathy

Downloads: 2
Views: 725

Abstract

In the present work, commercial arrowroot starch (AR starch) has been successfully used as a base material with sodium salt of carboxy methyl cellulose (CMC) for buccal drug delivery system. Different ratio of CMC and AR starch has been prepared with constant ratio of drug. In our study, glipizide has been used as the drug for controlled drug delivery through buccal mucosa. Films were cast by solution casting method with glycerol as plasticizer. All the films were characterized for thickness, swelling index, moisture content, relative pH, drug content uniformity, compatibility of polymer and drug, surface morphology of films, muco adhesive property and in-vitro drug release study. Formulation F3 shows a residence time of 140 minutes with good mucoadhesive property, compatibility within polymers, drug content uniformity of 100 ± 6.0% and a controlled drug release among all the ratios.

Keywords

arrowroot starch, buccal drug delivery, CMC, film, glipizide.

References

1 Meher, J. G., Tarai, M., Yadav, N. P., Patnaik, A., Mishra, P., & Yadav, K. S. (2013). Development and characterization of cellulose–polymethacrylate mucoadhesive film for buccal delivery of carvedilol. Carbohydrate Polymers96(1), 172-180. http://dx.doi.org/10.1016/j.carbpol.2013.03.076. PMid:23688467. 

2 Khan, S., Trivedi, V., & Boateng, J. (2016). Functional physico-chemical, ex vivo permeation and cell viability characterization of omeprazole loaded buccal films for paediatric drug delivery. International Journal of Pharmaceutics500(1-2), 217-226. http://dx.doi.org/10.1016/j.ijpharm.2016.01.045. PMid:26802493. 

3 Sabale, V., Paranjape, A., Patel, V., & Sabale, P. (2017). Characterization of natural polymers from jackfruit pulp, calendula flowers and tara seeds as mucoadhesive and controlled release components in buccal tablets. International Journal of Biological Macromolecules95, 321-330. http://dx.doi.org/10.1016/j.ijbiomac.2016.11.078. PMid:27889336. 

4 Pendekal, M. S., & Tegginamat, P. K. (2012). Formulation and evaluation of a bioadhesive patch for buccal delivery of tizanidine. Acta Pharmaceutica Sinica. B2(3), 318-324. http://dx.doi.org/10.1016/j.apsb.2011.12.012

5 Sarojini S. (2016). Formulation development of Olmesartan Medoxomil Mucoadhesive buccal film. Asian Journal of Pharmaceutical Sciences, 10(4), 510-517. https://doi.org/10.22377/ajp.v10i04.886

6 Khan, S., Boateng, J. S., Mitchell, J., & Trivedi, V. (2015). Formulation, characterisation and stabilisation of buccal films for paediatric drug delivery of omeprazole. AAPS PharmSciTech16(4), 800-810. http://dx.doi.org/10.1208/s12249-014-0268-7. PMid:25559373. 

7 Gök, M. K., Ozgumuş, S., Demir, K., Cirit, U., Pabuccuoglu, S., Cevher, E., Ozsoy, Y., & Bacınoglu, S. (2016). Development of starch based mucoadhesive vaginal drug delivery systems for application in veterinary medicine. Carbohydrate Polymers136, 63-70. http://dx.doi.org/10.1016/j.carbpol.2015.08.079. PMid:26572329. 

8 Semalty, M., Semalty, A., & Kumar, G. (2008). Formulation and characterization of mucoadhesive buccal films of glipizide. Indian Journal of Pharmaceutical Sciences70(1), 43-48. http://dx.doi.org/10.4103/0250-474X.40330. PMid:20390079. 

9 Kraisit, P., Limmatvapirat, S., Luangtana-Anan, M., & Sriamornsak, P. (2017). Buccal administration of mucoadhesive blend films saturated with propranolol loaded nanoparticles. Asian Journal of Pharmaceutical Sciences13(1), 34-43. http://dx.doi.org/10.1016/j.ajps.2017.07.006. PMid:32104376. 

10 Nazari, K., Kontogiannidou, E., Ahmad, R. H., Andreadis, D., Rasekh, M., Bouropoulos, N., van Der Merwe, S. M., Chang, M. W., Fatouros, D. G., & Ahmad, Z. (2017). Fibrous polymeric buccal film formulation, engineering and bio-interface assessment. European Polymer Journal97, 147-172. http://dx.doi.org/10.1016/j.eurpolymj.2017.09.046

11 Ch’ng, H. S., Park, H., Kelly, P., & Robinson, J. R. (1985). Bioadhesive polymers as platforms for oral controlled drug delivery II: synthesis and evaluation of some swelling, water‐insoluble bioadhesive polymers. Journal of Pharmaceutical Sciences74(4), 399-405. http://dx.doi.org/10.1002/jps.2600740407. PMid:3998999. 

12 Ahuja, A., Khar, R. K., & Ali, J. (1997). Mucoadhesive drug delivery systems. Drug Development and Industrial Pharmacy23(5), 489-515. http://dx.doi.org/10.3109/03639049709148498

13 Okeke, O. C., & Boateng, J. S. (2016). Composite HPMC and sodium alginate based buccal formulations for nicotine replacement therapy. International Journal of Biological Macromolecules91, 31-44. http://dx.doi.org/10.1016/j.ijbiomac.2016.05.079. PMid:27222284. 

14 Dekina, S., Romanovska, I., Ovsepyan, A., Tkach, V., & Muratov, E. (2016). Gelatin/carboxymethyl cellulose mucoadhesive films with lysozyme: Development and characterization. Carbohydrate Polymers147, 208-215. http://dx.doi.org/10.1016/j.carbpol.2016.04.006. PMid:27178926. 

15 Diaz del Consuelo, I., Falson, F., Guy, R. H., & Jacques, Y. (2007). Ex vivo evaluation of bioadhesive films for buccal delivery of fentanyl. Journal of Controlled Release122(2), 135-140. http://dx.doi.org/10.1016/j.jconrel.2007.05.017. PMid:17688966. 

16 Kumar, V., & Banker, G. S. (1993). Chemically-modified celldlosic polymers. Drug Development and Industrial Pharmacy19(1-2), 1-31. http://dx.doi.org/10.3109/03639049309038760

17 Eouani, C., Piccerelle, P., Prinderre, P., Bourret, E., & Joachim, J. (2001). In-vitro comparative study of buccal mucoadhesive performance of different polymeric films. European Journal of Pharmaceutics and Biopharmaceutics52(1), 45-55. http://dx.doi.org/10.1016/S0939-6411(01)00146-1. PMid:11438423. 

18 Duchene, D., Touchard, F., & Peppas, N. A. (1998). Pharmaceutical and medical aspects of bioadhesive systems for drug administration. Drug Development and Industrial Pharmacy14(1), 283-318. http://dx.doi.org/10.3109/03639048809151972

19 Mortazavi, S. A., Carpenter, B. G., & Smart, J. D. (1993). A comparative study on the role played by mucus glycoproteins in the rheological behaviour of the mucoadhesive/mucosal interface. International Journal of Pharmaceutics94(1-3), 195-201. http://dx.doi.org/10.1016/0378-5173(93)90024-A

20 Russo, E., Selmin, F., Baldassari, S., Gennari, C. G., Caviglioli, G., Cilurzo, F., Minghetti, P., & Parodi, B. (2016). A focus on mucoadhesive polymers and their application in buccal dosage forms. Journal of Drug Delivery Science and Technology32, 113-125. http://dx.doi.org/10.1016/j.jddst.2015.06.016

21 Parodi, B., Russo, E., Gatti, P., Cafaggi, S., & Bignardi, G. (1999). Development and in vitro evaluation of buccoadhesive tablets using a new mode substrate for bioadhesion measures: The eggshell membrane. Drug Development and Industrial Pharmacy25(3), 289-295. http://dx.doi.org/10.1081/DDC-100102173. PMid:10071821. 

22 Xie, F., Halley, P. J., & Avérous, L. (2012). Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Progress in Polymer Science37(4), 595-623. http://dx.doi.org/10.1016/j.progpolymsci.2011.07.002

23 Xiao, H., Yang, T., Lin, Q., Liu, G. Q., Zhang, L., Yu, F., & Chen, Y. (2016). Acetylated starch nanocrystals: preparation and antitumor drug delivery study. International Journal of Biological Macromolecules89, 456-464. http://dx.doi.org/10.1016/j.ijbiomac.2016.04.037. PMid:27156696.

24 Koch, K., Gillgren, T., Stading, M., & Andersson, R. (2010). Mechanical and structural properties of solution-cast high-amylose maize starch films. International Journal of Biological Macromolecules46(1), 13-29. http://dx.doi.org/10.1016/j.ijbiomac.2009.10.002. PMid:19828118. 

25 Borges, A. F., Silva, C., Coelho, J. F., & Simões, S. (2015). Oral films: current status and future perspectives: I—galenical development and quality attributes. Journal of Controlled Release206, 1-19. http://dx.doi.org/10.1016/j.jconrel.2015.03.006. PMid:25747406. 

26 Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., Sriburi, P., & Rachtanapun, P. (2011). Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chemistry Central Journal5(1), 6. http://dx.doi.org/10.1186/1752-153X-5-6. PMid:21306655. 

27 Ghanbarzadeh, B., Almasi, H., & Entezami, A. (2011). Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Industrial Crops and Products33(1), 229-235. http://dx.doi.org/10.1016/j.indcrop.2010.10.016.

28 Kibar, E. A., & Us, F. (2013). Thermal, mechanical and water adsorption properties of corn starch–carboxymethylcellulose/methylcellulose biodegradable films. Journal of Food Engineering114(1), 123-13. http://dx.doi.org/10.1016/j.jfoodeng.2012.07.034

29 Ghanbarzadeh, B., Almasi, H., & Entezami, A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative Food Science & Emerging Technologies11(4), 697-702. http://dx.doi.org/10.1016/j.ifset.2010.06.001

30 Gu, Q., Wang, C., Wang, G., Han, Z., Li, Y., Wang, X., Li, J., Qi, C., Xu, T., Yang, X., & Wang, L. (2015). Glipizide suppresses embryonic vasculogenesis and angiogenesis through targeting natriuretic peptide receptor A. Experimental Cell Research33(2), 261-272. http://dx.doi.org/10.1016/j.yexcr.2015.03.012. PMid:25823921. 

31 Seenivasan, P., Chowdary, K. P., Reddy, C. U., & Murthy, J. S. (2013). Design and evaluation of glipizide CR tablets employing starch acetate as rate controlling matrix former. Journal of Pharmacy Research6(6), 653-655. http://dx.doi.org/10.1016/j.jopr.2013.06.013

32 Sankalia, J. M., Sankalia, M. G., & Mashru, R. C. (2008). Drug release and swelling kinetics of directly compressed glipizide sustained-release matrices: establishment of level A IVIVC. Journal of Controlled Release129(1), 49-58. http://dx.doi.org/10.1016/j.jconrel.2008.03.016. PMid:18456362. 

33 Chowdary, K. R., Rao, N. K., & Malathi, K. (2004). Ethyl cellulose microspheres of glipizide: Characterization, in vitro and in vivo evaluation. Indian Journal of Pharmaceutical Sciences66(4), 412-416. 

34 International Organization for Standardization – ISO. (2007). ISO 6647-2. Rice – Determination of Amylose Content – Part 2: Routine Methods. Geneva: ISO. 

35 Gajdosova, M., Vetchy, D., Dolezel, P., Gajdziok, J., Landova, H., Muselík, J., Zeman, J., Knotek, Z., Hauptman, K., & Jekl, V. (2016). Evaluation of mucoadhesive oral films containing nystatin. Journal of Applied Biomedicine14(4), 247-256. http://dx.doi.org/10.1016/j.jab.2016.05.002

36 Nair, A. B., Kumria, R., Harsha, S., Attimarad, M., Al-Dhubiab, B. E., & Alhaider, I. A. (2013). In vitro techniques to evaluate buccal films. Journal of Controlled Release166(1), 10-21. http://dx.doi.org/10.1016/j.jconrel.2012.11.019. PMid:23219961. 

37 Li, X. Q., Ye, Z. M., Wang, J. B., Fan, C. R., Pan, A. W., Li, C., & Zhang, R. B. (2017). Mucoadhesive buccal films of tramadol for effective pain management. Revista Brasileira de Anestesiologia67(3), 231-237. http://dx.doi.org/10.1016/j.bjan.2016.10.006. PMid:27899200. 

38 Davidovich-Pinhas, M., & Bianco-Peled, H. (2010). Mucoadhesion: a review of characterization techniques. Expert Opinion on Drug Delivery7(2), 259-271. http://dx.doi.org/10.1517/17425240903473134. PMid:20095946. 

39 Hunt, J. A., Joshi, H. N., Stella, V. J., & Topp, E. M. (1990). Diffusion and drug release in polymer films prepared from ester derivatives of hyaluronic acid. Journal of Controlled Release12(2), 159-169. http://dx.doi.org/10.1016/0168-3659(90)90092-8

40 Cao, N., Yang, X., & Fu, Y. (2009). Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocolloids23(3), 729-735. http://dx.doi.org/10.1016/j.foodhyd.2008.07.017

41 Karki S., Kim H., Na S.J., Shin D., Jo K., Lee J. (2016). Thin films as an emerging platform for drug delivery. Asian Journal of Pharmaceutical Sciences11(5), 559-574. https://doi.org/10.1016/j.ajps.2016.05.004

42 Shidhaye, S. S., Saindane, N. S., Sutar, S., & Kadam, V. (2008). Mucoadhesive bilayered patches for administration of sumatriptan succinate. AAPS PharmSciTech9(3), 909-916. http://dx.doi.org/10.1208/s12249-008-9125-x. PMid:18679806. 

43 Peppas, N. A., Bures, P., Leobandung, W., & Ichikawa, H. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics50(1), 27-46. http://dx.doi.org/10.1016/S0939-6411(00)00090-4. PMid:10840191. 

44 Baranowski, P., Karolewicz, B., Gajda, M., & Pluta, J. (2014). Ophthalmic drug dosage forms: characterisation and research methods. TheScientificWorldJournal2014, 1-14. http://dx.doi.org/10.1155/2014/861904. PMid:24772038.

45 Panomsuk, S. P., Hatanaka, T., Aiba, T., Katayama, K., & Koizumi, T. (1996). A study of the hydrophilic cellulose matrix: effect of drugs on swelling properties. Chemical & Pharmaceutical Bulletin44(5), 1039-1042. http://dx.doi.org/10.1248/cpb.44.1039

46 Mali, S., Sakanaka, L. S., Yamashita, F., & Grossmann, M. V. (2005). Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers60(3), 283-289. http://dx.doi.org/10.1016/j.carbpol.2005.01.003

47 Reddy, J. R., Muzib, Y. I., & Chowdary, K. P. (2013). Development and in-vivo characterization of novel trans buccal formulations of Amiloride hydrochloride. Journal of Pharmacy Research6(6), 647-652. http://dx.doi.org/10.1016/j.jopr.2013.04.051

48 Bhyan, B., Jangra, S., Kaur, M., & Singh, H. (2011). Orally fast dissolving films: innovations in formulation and technology. International Journal of Pharmaceutical Sciences Review and Research9(2), 50-57. 

49 Duan, X., Han, Y., Li, Y., & Chen, Y. (2014). Improved capacity retention of low cost sulfur cathodes enabled by a novel starch binder derived from food. RSC Advances4(105), 60995-61000. http://dx.doi.org/10.1039/C4RA10953H

50 Irfan, M., Rabel, S., Bukhtar, Q., Qadir, M. I., Jabeen, F., & Khan, A. (2016). Orally disintegrating films: a modern expansion in drug delivery system. Saudi Pharmaceutical Journal24(5), 537-546. http://dx.doi.org/10.1016/j.jsps.2015.02.024. PMid:27752225. 

51 Joshi A. S., Patil C. C., Shiralashetti S. S., Kalyane N. V. (2013). Design, characterization and evaluation of Eudragit microspheres containing glipizide. Drug Invention Today5(3), 229-234. https://doi.org/10.1016/j.dit.2013.06.009

52 Sandoval Gordillo, C. A., Valencia, G. A., Vargas Zapata, R. A., & Agudelo Henao, A. C. (2014). Physicochemical characterization of arrowroot starch (Maranta arundinacea linn) and glycerol/arrowroot starch membranes. International Journal of Food Engineering10(4), 727-735. http://dx.doi.org/10.1515/ijfe-2014-0122

53 Biswal, D. R., & Singh, R. P. (2004). Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydrate Polymers57(4), 379-387. http://dx.doi.org/10.1016/j.carbpol.2004.04.020.

54 Jiménez-castellanos, M. R., Zia, H., & Rhodes, C. T. (1993). Mucoadhesive drug delivery systems. Drug Development and Industrial Pharmacy19(1-2), 143-194. http://dx.doi.org/10.3109/03639049309038765

55 Jimenez-Castellanos, M. R., Zia, H., & Rhodes, C. T. (1993). Assessment of an in vitro method for measuring the bioadhesiveness of tablets. International Journal of Pharmaceutics89(3), 223-228. http://dx.doi.org/10.1016/0378-5173(93)90247-D

5eb2f5a70e88256443d76ee0 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections