Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Kraft lignin and polyethylene terephthalate blends: effect on thermal and mechanical properties

Lazzari, Lívia; Domingos, Eloilson; Silva, Letícia; Kuznetsov, Alexei; Romão, Wanderson; Araujo, Joyce

Downloads: 0
Views: 189


In this work, bottle-grade poly(ethylene terephthalate) (PETR), kraft lignin (KL), and chemically modified lignin (ML) were used to form blends to improve the mechanical and thermal properties of pure PET. The PET/KL and PETR/ML blends were produced with 0.5, 1, 3, and 5 wt.% of lignin via melt extrusion and injection molding. The produced blends and PETR were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TGA), differential scanning calorimetry (DSC) and mechanical properties testing. The FTIR measurements confirmed the chemical modifications of the ML samples, while the TGA results showed KL to be thermally more stable than ML. The glass transition temperature of PETR changed as a function of the amount of lignin, as revealed by the DSC measurements. The PET/KL blends demonstrated their potential for use as an engineering material due to their improved thermal and mechanical properties compared to those of PETR.


blends; kraft lignin; mechanical properties; poly(ethylene terephthalate).


1 Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: a comprehensive review. Biotechnology Advances26(3), 246-265. http://dx.doi.org/10.1016/j.biotechadv.2007.12.005. PMid:18337047. 

2 Vanini, G., Castro, E. V. R., Silva, E. A., Fo., & Romão, W. (2013). Despolimerização química de PET grau garrafa pós-consumo na presença de um catalisador catiônico, o brometo de hexadeciltrimetrilamônio (CTAB). Polímeros: Ciência e Tecnologia23(3), 425-431. http://dx.doi.org/10.4322/polimeros.2013.084

3 Abdul Aziz, F. M., Surip, S. N., Bonnia, N. N., & Sekak, K. A. (2018). The effect of pineapple leaf fiber (PALF) incorporation into polyethylene terephthalate (PET) on FTIR, morphology and wetting properties. IOP Conference Series: Earth and Environmental Science105(1), 012082. http://dx.doi.org/10.1088/1755-1315/105/1/012082

4 Gadioli, R., Morais, J. A., Waldman, W. R., & De Paoli, M.-A. (2014). The role of lignin in polypropylene composites with semi-bleached cellulose fibers: mechanical properties and its activity as antioxidant. Polymer Degradation & Stability108, 23-34. http://dx.doi.org/10.1016/j.polymdegradstab.2014.06.005

5 Karmakar, S., De, S. K., & Goswami, A. (2018). A pollution sensitive remanufacturing model with waste items: triangular dense fuzzy lock set approach. Journal of Cleaner Production187, 789-803. http://dx.doi.org/10.1016/j.jclepro.2018.03.161

6 Karagiannidis, P. G., Stergiou, A. C., & Karayannidis, G. P. (2008). Study of crystallinity and thermomechanical analysis of annealed poly(ethylene terephthalate) films. European Polymer Journal44(5), 1475-1486. http://dx.doi.org/10.1016/j.eurpolymj.2008.02.024

7 Romão, W., Franco, M. F., Bueno, M. I. M. S., & De Paoli, M.-A. (2010). Distinguishing between virgin and post-consumption bottle-grade poly (ethylene terephthalate) using thermal properties. Polymer Testing29(7), 879-885. http://dx.doi.org/10.1016/j.polymertesting.2010.05.009

8 Romão, W., Franco, M. F., Bueno, M. I. M. S., Eberlin, M. N., & De Paoli, M.-A. (2010). Analysing metals in bottle-grade poly(ethylene terephthalate) by X-ray fluorescence spectrometry. Journal of Applied Polymer Science117(5), 2993-3000. http://dx.doi.org/10.1002/app.32232

9 Romão, W., Franco, M. F., Corilo, Y. E., Eberlin, M. N., Spinacé, M. A. S., & De Paoli, M.-A. (2009). Poly (ethylene terephthalate) thermo-mechanical and thermo-oxidative degradation mechanisms. Polymer Degradation & Stability94(10), 1849-1859. http://dx.doi.org/10.1016/j.polymdegradstab.2009.05.017

10 Romão, W., Franco, M. F., Iglesias, A. H., Sanvido, G. B., Maretto, D. A., Gozzo, F. C., Poppi, R. J., Eberlin, M. N., & De Paoli, M.-A. (2010). Fingerprinting of bottle-grade poly(ethylene terephthalate) via matrix-assisted laser desorption/ionization mass spectrometry. Polymer Degradation & Stability95(4), 666-671. http://dx.doi.org/10.1016/j.polymdegradstab.2009.11.046

11 Abdul Razak, N. C., Inuwa, I. M., Hassan, A., & Samsudin, S. A. (2013). Effects of compatibilizers on mechanical properties of PET/PP blend. Composite Interfaces20(7), 507-515. http://dx.doi.org/10.1080/15685543.2013.811176

12 Kiziltas, A., Gardner, D. J., Han, Y., & Yang, H.-S. (2011). Thermal properties of microcrystalline cellulose-filled PET-PTT blend polymer composites. Journal of Thermal Analysis and Calorimetry103(1), 163-170. http://dx.doi.org/10.1007/s10973-010-0894-6

13 Torres-Huerta, A. M., Palma-Ramírez, D., Domínguez-Crespo, M. A., Del Angel-López, D., & de la Fuente, D. (2014). Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends. European Polymer Journal61, 285-299. http://dx.doi.org/10.1016/j.eurpolymj.2014.10.016

14 Laurichesse, S., & Avérous, L. (2014). Chemical modification of lignins: towards biobased polymers. Progress in Polymer Science39(7), 1266-1290. http://dx.doi.org/10.1016/j.progpolymsci.2013.11.004

15 Chakar, F. S., & Ragauskas, A. J. (2004). Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products20(2), 131-141. http://dx.doi.org/10.1016/j.indcrop.2004.04.016

16 Haddad, M., Bazinet, L., Savadogo, O., & Paris, J. (2017). A feasibility study of a novel electro-membrane based process to acidify Kraft black liquor and extract lignin. Process Safety and Environmental Protection106, 68-75. http://dx.doi.org/10.1016/j.psep.2016.10.003

17 Luiz, F. S., Scremin, F. R., Werncke, E., Basso, R. L. O., Possan, E., & Bittencourt, P. R. S. (2020). Thermal evaluation by DSC and tensile strength of extrudated blends from polyethylene terephthalate and kraft lignin. Waste and Biomass Valorization11(1), 367-373. http://dx.doi.org/10.1007/s12649-018-0367-x

18 Glasser, W. G., Barnett, C. A., Muller, P. C., & Sarkanen, K. V. (1983). The chemistry of several novel bioconversion lignins. Journal of Agricultural and Food Chemistry31(5), 921-930. http://dx.doi.org/10.1021/jf00119a001

19 Sahoo, S., Misra, M., & Mohanty, A. K. (2011). Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Composites. Part A, Applied Science and Manufacturing42(11), 1710-1718. http://dx.doi.org/10.1016/j.compositesa.2011.07.025

20 Sameni, J., Krigstin, S., Jaffer, S. A., & Sain, M. (2018). Preparation and characterization of biobased microspheres from lignin sources. Industrial Crops and Products117, 58-65. http://dx.doi.org/10.1016/j.indcrop.2018.02.078

21 Jeong, H., Park, J., Kim, S., Lee, J., & Cho, J. W. (2012). Use of acetylated softwood kraft lignin as filler in synthetic polymers. Fibers and Polymers13(10), 1310-1318. http://dx.doi.org/10.1007/s12221-012-1310-6

22 Kadla, J. F., & Kubo, S. (2004). Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Composites. Part A, Applied Science and Manufacturing35(3), 395-400. http://dx.doi.org/10.1016/j.compositesa.2003.09.019

23 Silva, L. G., Ruggiero, R., Gontijo, P. M., Pinto, R. B., Royer, B., Lima, E. C., Fernandes, T. H. M., & Calvete, T. (2011). Adsorption of Brilliant Red 2BE dye from water solutions by a chemically modified sugarcane bagasse lignin. Chemical Engineering Journal168(2), 620-628. http://dx.doi.org/10.1016/j.cej.2011.01.040.

24 Edge, M., Wiles, R., Allen, N. S., McDonald, W. A., & Mortlock, S. V. (1996). Characterisation of the species responsible for yellowing in melt degraded aromatic polyesters—I: yellowing of poly(ethylene terephthalate). Polymer Degradation & Stability53(2), 141-151. http://dx.doi.org/10.1016/0141-3910(96)00081-X.

25 Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2014). Spectrometric identification of organic compounds. Hoboken: John Wiley & Sons.

26 Grandmaison, J. L., Thibault, J., Kaliaguine, S., & Chantal, P. D. (1987). Fourier-transform infrared spectrometry and thermogravimetry of partially converted lignocellulosic materials. Analytical Chemistry59(17), 2153-2157. http://dx.doi.org/10.1021/ac00144a031

27 Jakab, E., Faix, O., & Till, F. (1997). Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. Journal of Analytical and Applied Pyrolysis, 40-41, 171-186. http://dx.doi.org/10.1016/S0165-2370(97)00046-6

28 Brebu, M., & Vasile, C. (2010). Thermal degradation of lignin: a review. Cellulose Chemistry and Technology44(9), 353-363. 

29 Hoareau, W., Trindade, W. G., Siegmund, B., Castellan, A., & Frollini, E. (2004). Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability. Polymer Degradation & Stability86(3), 567-576. http://dx.doi.org/10.1016/j.polymdegradstab.2004.07.005

30 Meier, D., & Faix, O. (1999). State of the art of applied fast pyrolysis of lignocellulosic materials: a review. Bioresource Technology68(1), 71-77. http://dx.doi.org/10.1016/S0960-8524(98)00086-8

31 Rohella, R. S., Sahoo, N., Paul, S. C., Choudhury, S., & Chakravortty, V. (1996). Thermal studies on isolated and purified lignin. Thermochimica Acta287(1), 131-138. http://dx.doi.org/10.1016/0040-6031(96)02983-8

32 Kindsigo, M., & Kallas, J. (2006). Degradation of lignins by wet oxidation: model water solutions. Proceedings of the Estonian Academy of Sciences: Chemistry55(3), 132-144. 

33 Irvine, G. M. (1985). The significance of the glass transition of lignin in thermomechanical pulping. Wood Science and Technology19(2), 139-149. http://dx.doi.org/10.1007/BF00353074

34 Lisperguer, J., Perez, P., & Urizar, S. (2009). Structure and thermal properties of lignins: characterization by infrared spectroscopy and differential scanning calorimetry. Journal of the Chilean Chemical Society54(4), 460-463. http://dx.doi.org/10.4067/S0717-97072009000400030

35 Awal, A., & Sain, M. (2013). Characterization of soda hardwood lignin and the formation of lignin fibers by melt spinning. Journal of Applied Polymer Science129(5), 2765-2771. http://dx.doi.org/10.1002/app.38911

36 Cachet, N., Camy, S., Benjelloun-Mlayah, B., Condoret, J.-S., & Delmas, M. (2014). Esterification of organosolv lignin under supercritical conditions. Industrial Crops and Products58, 287-297. http://dx.doi.org/10.1016/j.indcrop.2014.03.039

37 Gordobil, O., Delucis, R., Egüés, I., & Labidi, J. (2015). Kraft lignin as filler in PLA to improve ductility and thermal properties. Industrial Crops and Products72, 46-53. http://dx.doi.org/10.1016/j.indcrop.2015.01.055.

38 Canevarolo, S. V. (2010). Ciência dos polímeros: um texto básico para tecnólogos e engenheiros. São Paulo: Artliber 

39 Wellen, R. M. R., Canedo, E. L., & Rabello, M. S. (2012). Effect of styrene-co-acrylonitrile on cold crystallization and mechanical properties of poly(ethylene terephthalate). Journal of Applied Polymer Science125(4), 2701-2710. http://dx.doi.org/10.1002/app.36585

40 Araujo, J. R., Mano, B., Teixeira, G. M., Spinacé, M. A. S., & De Paoli, M.-A. (2010). Biomicrofibrilar composites of high density polyethylene reinforced with curauá fibers: Mechanical, interfacial and morphological properties. Composites Science and Technology70(11), 1637-1644. http://dx.doi.org/10.1016/j.compscitech.2010.06.006

41 Makkam, S., & Harnnarongchai, W. (2014). Rheological and mechanical properties of recycled PET modified by reactive extrusion. Energy Procedia56, 547-553. http://dx.doi.org/10.1016/j.egypro.2014.07.191.



5eb2e7930e8825e20cd76ee0 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections