Kraft lignin and polyethylene terephthalate blends: effect on thermal and mechanical properties
Lazzari, Lívia; Domingos, Eloilson; Silva, Letícia; Kuznetsov, Alexei; Romão, Wanderson; Araujo, Joyce
Abstract
In this work, bottle-grade poly(ethylene terephthalate) (PETR), kraft lignin (KL), and chemically modified lignin (ML) were used to form blends to improve the mechanical and thermal properties of pure PET. The PET/KL and PETR/ML blends were produced with 0.5, 1, 3, and 5 wt.% of lignin via melt extrusion and injection molding. The produced blends and PETR were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TGA), differential scanning calorimetry (DSC) and mechanical properties testing. The FTIR measurements confirmed the chemical modifications of the ML samples, while the TGA results showed KL to be thermally more stable than ML. The glass transition temperature of PETR changed as a function of the amount of lignin, as revealed by the DSC measurements. The PET/KL blends demonstrated their potential for use as an engineering material due to their improved thermal and mechanical properties compared to those of PETR.
Keywords
References
1 Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: a comprehensive review. Biotechnology Advances, 26(3), 246-265. http://dx.doi.org/10.1016/j.biotechadv.2007.12.005. PMid:18337047.
2 Vanini, G., Castro, E. V. R., Silva, E. A., Fo., & Romão, W. (2013). Despolimerização química de PET grau garrafa pós-consumo na presença de um catalisador catiônico, o brometo de hexadeciltrimetrilamônio (CTAB). Polímeros: Ciência e Tecnologia, 23(3), 425-431. http://dx.doi.org/10.4322/polimeros.2013.084.
3 Abdul Aziz, F. M., Surip, S. N., Bonnia, N. N., & Sekak, K. A. (2018). The effect of pineapple leaf fiber (PALF) incorporation into polyethylene terephthalate (PET) on FTIR, morphology and wetting properties. IOP Conference Series: Earth and Environmental Science, 105(1), 012082. http://dx.doi.org/10.1088/1755-1315/105/1/012082.
4 Gadioli, R., Morais, J. A., Waldman, W. R., & De Paoli, M.-A. (2014). The role of lignin in polypropylene composites with semi-bleached cellulose fibers: mechanical properties and its activity as antioxidant. Polymer Degradation & Stability, 108, 23-34. http://dx.doi.org/10.1016/j.polymdegradstab.2014.06.005.
5 Karmakar, S., De, S. K., & Goswami, A. (2018). A pollution sensitive remanufacturing model with waste items: triangular dense fuzzy lock set approach. Journal of Cleaner Production, 187, 789-803. http://dx.doi.org/10.1016/j.jclepro.2018.03.161.
6 Karagiannidis, P. G., Stergiou, A. C., & Karayannidis, G. P. (2008). Study of crystallinity and thermomechanical analysis of annealed poly(ethylene terephthalate) films. European Polymer Journal, 44(5), 1475-1486. http://dx.doi.org/10.1016/j.eurpolymj.2008.02.024.
7 Romão, W., Franco, M. F., Bueno, M. I. M. S., & De Paoli, M.-A. (2010). Distinguishing between virgin and post-consumption bottle-grade poly (ethylene terephthalate) using thermal properties. Polymer Testing, 29(7), 879-885. http://dx.doi.org/10.1016/j.polymertesting.2010.05.009.
8 Romão, W., Franco, M. F., Bueno, M. I. M. S., Eberlin, M. N., & De Paoli, M.-A. (2010). Analysing metals in bottle-grade poly(ethylene terephthalate) by X-ray fluorescence spectrometry. Journal of Applied Polymer Science, 117(5), 2993-3000. http://dx.doi.org/10.1002/app.32232.
9 Romão, W., Franco, M. F., Corilo, Y. E., Eberlin, M. N., Spinacé, M. A. S., & De Paoli, M.-A. (2009). Poly (ethylene terephthalate) thermo-mechanical and thermo-oxidative degradation mechanisms. Polymer Degradation & Stability, 94(10), 1849-1859. http://dx.doi.org/10.1016/j.polymdegradstab.2009.05.017.
10 Romão, W., Franco, M. F., Iglesias, A. H., Sanvido, G. B., Maretto, D. A., Gozzo, F. C., Poppi, R. J., Eberlin, M. N., & De Paoli, M.-A. (2010). Fingerprinting of bottle-grade poly(ethylene terephthalate) via matrix-assisted laser desorption/ionization mass spectrometry. Polymer Degradation & Stability, 95(4), 666-671. http://dx.doi.org/10.1016/j.polymdegradstab.2009.11.046.
11 Abdul Razak, N. C., Inuwa, I. M., Hassan, A., & Samsudin, S. A. (2013). Effects of compatibilizers on mechanical properties of PET/PP blend. Composite Interfaces, 20(7), 507-515. http://dx.doi.org/10.1080/15685543.2013.811176.
12 Kiziltas, A., Gardner, D. J., Han, Y., & Yang, H.-S. (2011). Thermal properties of microcrystalline cellulose-filled PET-PTT blend polymer composites. Journal of Thermal Analysis and Calorimetry, 103(1), 163-170. http://dx.doi.org/10.1007/s10973-010-0894-6.
13 Torres-Huerta, A. M., Palma-Ramírez, D., Domínguez-Crespo, M. A., Del Angel-López, D., & de la Fuente, D. (2014). Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends. European Polymer Journal, 61, 285-299. http://dx.doi.org/10.1016/j.eurpolymj.2014.10.016.
14 Laurichesse, S., & Avérous, L. (2014). Chemical modification of lignins: towards biobased polymers. Progress in Polymer Science, 39(7), 1266-1290. http://dx.doi.org/10.1016/j.progpolymsci.2013.11.004.
15 Chakar, F. S., & Ragauskas, A. J. (2004). Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products, 20(2), 131-141. http://dx.doi.org/10.1016/j.indcrop.2004.04.016.
16 Haddad, M., Bazinet, L., Savadogo, O., & Paris, J. (2017). A feasibility study of a novel electro-membrane based process to acidify Kraft black liquor and extract lignin. Process Safety and Environmental Protection, 106, 68-75. http://dx.doi.org/10.1016/j.psep.2016.10.003.
17 Luiz, F. S., Scremin, F. R., Werncke, E., Basso, R. L. O., Possan, E., & Bittencourt, P. R. S. (2020). Thermal evaluation by DSC and tensile strength of extrudated blends from polyethylene terephthalate and kraft lignin. Waste and Biomass Valorization, 11(1), 367-373. http://dx.doi.org/10.1007/s12649-018-0367-x.
18 Glasser, W. G., Barnett, C. A., Muller, P. C., & Sarkanen, K. V. (1983). The chemistry of several novel bioconversion lignins. Journal of Agricultural and Food Chemistry, 31(5), 921-930. http://dx.doi.org/10.1021/jf00119a001.
19 Sahoo, S., Misra, M., & Mohanty, A. K. (2011). Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Composites. Part A, Applied Science and Manufacturing, 42(11), 1710-1718. http://dx.doi.org/10.1016/j.compositesa.2011.07.025.
20 Sameni, J., Krigstin, S., Jaffer, S. A., & Sain, M. (2018). Preparation and characterization of biobased microspheres from lignin sources. Industrial Crops and Products, 117, 58-65. http://dx.doi.org/10.1016/j.indcrop.2018.02.078.
21 Jeong, H., Park, J., Kim, S., Lee, J., & Cho, J. W. (2012). Use of acetylated softwood kraft lignin as filler in synthetic polymers. Fibers and Polymers, 13(10), 1310-1318. http://dx.doi.org/10.1007/s12221-012-1310-6.
22 Kadla, J. F., & Kubo, S. (2004). Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Composites. Part A, Applied Science and Manufacturing, 35(3), 395-400. http://dx.doi.org/10.1016/j.compositesa.2003.09.019.
23 Silva, L. G., Ruggiero, R., Gontijo, P. M., Pinto, R. B., Royer, B., Lima, E. C., Fernandes, T. H. M., & Calvete, T. (2011). Adsorption of Brilliant Red 2BE dye from water solutions by a chemically modified sugarcane bagasse lignin. Chemical Engineering Journal, 168(2), 620-628. http://dx.doi.org/10.1016/j.cej.2011.01.040.
24 Edge, M., Wiles, R., Allen, N. S., McDonald, W. A., & Mortlock, S. V. (1996). Characterisation of the species responsible for yellowing in melt degraded aromatic polyesters—I: yellowing of poly(ethylene terephthalate). Polymer Degradation & Stability, 53(2), 141-151. http://dx.doi.org/10.1016/0141-3910(96)00081-X.
25 Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2014). Spectrometric identification of organic compounds. Hoboken: John Wiley & Sons.
26 Grandmaison, J. L., Thibault, J., Kaliaguine, S., & Chantal, P. D. (1987). Fourier-transform infrared spectrometry and thermogravimetry of partially converted lignocellulosic materials. Analytical Chemistry, 59(17), 2153-2157. http://dx.doi.org/10.1021/ac00144a031.
27 Jakab, E., Faix, O., & Till, F. (1997). Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. Journal of Analytical and Applied Pyrolysis, 40-41, 171-186. http://dx.doi.org/10.1016/S0165-2370(97)00046-6.
28 Brebu, M., & Vasile, C. (2010). Thermal degradation of lignin: a review. Cellulose Chemistry and Technology, 44(9), 353-363.
29 Hoareau, W., Trindade, W. G., Siegmund, B., Castellan, A., & Frollini, E. (2004). Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability. Polymer Degradation & Stability, 86(3), 567-576. http://dx.doi.org/10.1016/j.polymdegradstab.2004.07.005.
30 Meier, D., & Faix, O. (1999). State of the art of applied fast pyrolysis of lignocellulosic materials: a review. Bioresource Technology, 68(1), 71-77. http://dx.doi.org/10.1016/S0960-8524(98)00086-8.
31 Rohella, R. S., Sahoo, N., Paul, S. C., Choudhury, S., & Chakravortty, V. (1996). Thermal studies on isolated and purified lignin. Thermochimica Acta, 287(1), 131-138. http://dx.doi.org/10.1016/0040-6031(96)02983-8.
32 Kindsigo, M., & Kallas, J. (2006). Degradation of lignins by wet oxidation: model water solutions. Proceedings of the Estonian Academy of Sciences: Chemistry, 55(3), 132-144.
33 Irvine, G. M. (1985). The significance of the glass transition of lignin in thermomechanical pulping. Wood Science and Technology, 19(2), 139-149. http://dx.doi.org/10.1007/BF00353074.
34 Lisperguer, J., Perez, P., & Urizar, S. (2009). Structure and thermal properties of lignins: characterization by infrared spectroscopy and differential scanning calorimetry. Journal of the Chilean Chemical Society, 54(4), 460-463. http://dx.doi.org/10.4067/S0717-97072009000400030.
35 Awal, A., & Sain, M. (2013). Characterization of soda hardwood lignin and the formation of lignin fibers by melt spinning. Journal of Applied Polymer Science, 129(5), 2765-2771. http://dx.doi.org/10.1002/app.38911.
36 Cachet, N., Camy, S., Benjelloun-Mlayah, B., Condoret, J.-S., & Delmas, M. (2014). Esterification of organosolv lignin under supercritical conditions. Industrial Crops and Products, 58, 287-297. http://dx.doi.org/10.1016/j.indcrop.2014.03.039.
37 Gordobil, O., Delucis, R., Egüés, I., & Labidi, J. (2015). Kraft lignin as filler in PLA to improve ductility and thermal properties. Industrial Crops and Products, 72, 46-53. http://dx.doi.org/10.1016/j.indcrop.2015.01.055.
38 Canevarolo, S. V. (2010). Ciência dos polímeros: um texto básico para tecnólogos e engenheiros. São Paulo: Artliber
39 Wellen, R. M. R., Canedo, E. L., & Rabello, M. S. (2012). Effect of styrene-co-acrylonitrile on cold crystallization and mechanical properties of poly(ethylene terephthalate). Journal of Applied Polymer Science, 125(4), 2701-2710. http://dx.doi.org/10.1002/app.36585.
40 Araujo, J. R., Mano, B., Teixeira, G. M., Spinacé, M. A. S., & De Paoli, M.-A. (2010). Biomicrofibrilar composites of high density polyethylene reinforced with curauá fibers: Mechanical, interfacial and morphological properties. Composites Science and Technology, 70(11), 1637-1644. http://dx.doi.org/10.1016/j.compscitech.2010.06.006.
41 Makkam, S., & Harnnarongchai, W. (2014). Rheological and mechanical properties of recycled PET modified by reactive extrusion. Energy Procedia, 56, 547-553. http://dx.doi.org/10.1016/j.egypro.2014.07.191.