Synthesis and performance of AM/SSS/THDAB as clay hydration dispersion inhibitor
Du, Wei-Chao; Wang, Xiang-Yun; Liu, Man; Bi, Tai-Fei; Song, Shun-Xi; Zhang, Jie; Chen, Gang
Abstract
Keywords
References
1 Fagundes, K. R. S., Luz, R. C. S., Fagundes, F. P., & Balaban, R. C. (2018). Effect of carboxymethylcellulose on colloidal properties of calcite suspensions in drilling fluids. Polímeros: Ciência e Tecnologia, 28(4), 373-379. http://dx.doi.org/10.1590/0104-1428.11817.
2 Chen, S. Y., Shi, Y. P., Yang, X. Y., Xie, K. Z., & Cai, J. H. (2019). Design and evaluation of a surfactant–mixed metal hydroxide-based drilling fluid for maintaining wellbore stability in coal measure strata. Energies, 12(10), 1862-1881. http://dx.doi.org/10.3390/en12101862.
3 Wilson, M. J., & Wilson, L. (2014). Clay mineralogy and shale instability: an alternative conceptual analysis. Clay Minerals, 49(2), 127-145. http://dx.doi.org/10.1180/claymin.2014.049.2.01.
4 Anderson, R. L., Ratcliffe, I., Greenwell, H. C., Williams, P. A., Cliffe, S., & Coveney, P. V. (2010). Clay swelling: a challenge in the oilfield. Earth-Science Reviews, 98(3-4), 201-216. http://dx.doi.org/10.1016/j.earscirev.2009.11.003.
5 Gholami, R., Elochukwu, H., Fakhari, N., & Sarmadivaleh, M. (2018). A review on borehole instability in active shale formations: Interactions, mechanisms and inhibitors. Earth-Science Reviews, 177, 2-13. http://dx.doi.org/10.1016/j.earscirev.2017.11.002.
6 Du, W. C., Wang, X. Y., Chen, G., Zhang, J., & Slaný, M. (2020). Synthesis, property and mechanism analysis of a novel polyhydroxy organic amine shale hydration inhibitor. Minerals, 10(2), 128-142. http://dx.doi.org/10.3390/min10020128.
7 Rana, A., Arfaj, M. K., & Saleh, T. A. (2019). Advanced developments in shale inhibitors for oil production with low environmental footprints-A review. Fuel, 247, 237-249. http://dx.doi.org/10.1016/j.fuel.2019.03.006.
8 Ahmed, H. M., Kamal, M. S., & Al-Harthi, M. (2019). Polymeric and low molecular weight shale inhibitors: a review. Fuel, 251, 187-217. http://dx.doi.org/10.1016/j.fuel.2019.04.038.
9 Ghaderi, S., Ramazani S.A, A., & Haddadi, S. A. (2019). Applications of highly salt and highly temperature resistance terpolymer of acrylamide/styrene/maleic anhydride monomers as a rheological modifier: rheological and corrosion protection properties studies. Journal of Molecular Liquids, 294, 111635-111646. http://dx.doi.org/10.1016/j.molliq.2019.111635.
10 Abdollahi, M., Pourmahdi, M., & Nasiri, A. (2018). Synthesis and characterization of lignosulfonate/acrylamide graft copolymers and their application in environmentally friendly water- based drilling fluid. Journal of Petroleum Science Engineering, 171, 484-494. http://dx.doi.org/10.1016/j.petrol.2018.07.065.
11 Jia, H., Huang, P., Wang, Q. X., Han, Y. G., Wang, S. Y., Zhang, F., Pan, W., & Lv, K. H. (2019). Investigation of inhibition mechanism of three deep eutectic solvents as potential shale inhibitors in water-based drilling fluids. Fuel, 244, 403-411. http://dx.doi.org/10.1016/j.fuel.2019.02.018.
12 Zhao, X., Qiu, Z. S., Zhang, Y. J., Zhong, H. Y., Huang, W. A., & Tang, Z. C. (2017). Zwitterionic polymer P (AM-DMC-AMPS) as a low-molecular-weight encapsulator in deepwater drilling fluid. Apply. Science, 7(6), 594-810. http://dx.doi.org/10.3390/app7060594.
13 Pu, X. L., Du, W. C., Sun, J. S., Luo, X., & Zhang, H. D. (2016). Synthesis and application of a novel polyhydroxy amine clay anti-swelling agent. Petrochemical Technology, 45, 595-600.
14 Silva, F. A., Siopa, F., Figueiredo, B. F. H. T., Gonçalves, A. M. M., Pereira, J. L., Gonçalves, F., Coutinho, J. A. P., Afonso, C. A. M., & Ventura, S. P. M. (2014). Sustainable design for environment-friendly monoand dicationic cholinium-based ionic liquids. Ecotoxicology and Environmental Safety, 108, 302-310. http://dx.doi.org/10.1016/j.ecoenv.2014.07.003. PMid:25108510.
15 Paz, R. A., Leite, A. M. D., Araújo, E. M., Medeiros, V. N., Melo, T. J. A., & Pessan, L. A. (2016). Mechanical and thermomechanical properties of polyamide 6/Brazilian organoclay nanocomposites. Polímeros: Ciência e Tecnologia, 26(1), 52-60. http://dx.doi.org/10.1590/0104-1428.1748.
16 Jain, R., & Mahto, V. (2015). Evaluation of polyacrylamide/claycomposite as a potential drilling fluid additive in inhibitive water based drilling fluid system. Journal of Petroleum Science Engineering, 133, 612-621. http://dx.doi.org/10.1016/j.petrol.2015.07.009.
17 Costa, L. P., Jr., Silva, D. B. R., Aguiar, M. F., Melo, C. P., & Alves, K. G. B. (2019). Preparation and characterization of polypyrrole/organophilicmontmorillonite nanofibers obtained by electrospinning. Journal of Molecular Liquids, 275, 452-462. http://dx.doi.org/10.1016/j.molliq.2018.11.084.
18 Salles, F., Douillard, J.-M., Bildstein, O., Gaudin, C., Prelot, B., Zajac, J., & Van Damme, H. (2013). Driving force for the hydration of the swelling clays: case of montmorillonites saturated with alkaline-earth cations. Journal of Colloid and Interface Science, 395, 269-276. http://dx.doi.org/10.1016/j.jcis.2012.12.050. PMid:23352873.
19 Boek, E. S., Coveney, P. V., & Skipper, N. T. (1995). Monte carlo molecular modeling studies of hydrated Li-, Na-,and K-smectites: understanding the role of potassium as a clay swelling inhibitor. Journal of the American Chemical Society, 117(50), 12608-12617. http://dx.doi.org/10.1021/ja00155a025.
20 Caglar, B., Çırak, Ç., Tabak, A., Afsin, B., & Eren, E. (2013). Covalent grafting of pyridine-2-methanol into kaolinite layers. Journal of Molecular Liquids, 1032, 12-22. http://dx.doi.org/10.1016/j.molstruc.2012.08.004.
21 Du, W. C., Pu, X. L., Sun, J. S., Luo, X., Zhang, Y. N., & Li, L. (2018). Synthesis and evaluation of a novel monomeric amine as sodium montmorillonite swelling inhibitor. Adsorption Science and Technology, 36(1-2), 655-668. http://dx.doi.org/10.1177/0263617417713851.
22 Caglar, B., Topcu, C., Coldur, F., Sarp, G., Caglar, S., Tabak, A., & Sahin, E. (2016). Structural, thermal, morphological and surface charge properties of dodecyltrimethylammonium-smectite composites. Journal of Molecular Liquids, 1105, 70-79. http://dx.doi.org/10.1016/j.molstruc.2015.10.017.
23 Pérez, A., Montes, M., Molina, R., & Moreno, S. (2014). Modified clays as catalysts for the catalytic oxidation of ethanol. Applied Clay Science, 95, 18-24. http://dx.doi.org/10.1016/j.clay.2014.02.029.
24 Gang, C., Gao, L., Sun, Y., Gu, X., Hu, W., Du, W., Zhang, J., & Qu, C. (2019). A green shale inhibitor developed from lignin sulfonate and a mechanism study. Journal of Biobased Materials and Bioenergy, 13(6), 778-783. http://dx.doi.org/10.1166/jbmb.2019.1908.