Effects of polyether siloxane surfactant on the hydrophilic capacity of polypropylene films
Antunes, Lucas Fiamenghi; Simon, Douglas Alexandre; Fiorio, Rudinei; Francisquetti, Edson
Abstract
To evaluate the hydrophilic capacity, polypropylene and surfactant (polyether siloxane) samples were extruded in the proportions of 0.0, 0.5, 1.0 and 3.0 (wt%) and films were obtained in a heated press. The samples were submitted to measurements of contact angle, surface tension, melt flow index and surface roughness. The results indicated that increasing surfactant content promoted better wettability and consequently higher hydrophilicity. Using water, the increase in the surfactant content reduced the contact angle (92.58° to 68.10°) and increased the surface tension (26.7 to 56.9 mN.m-1). However, with ethylene glycol, increasing the surfactant content promoted a small variation on the contact angle (59.14° to 65.10°) and on the surface tension (5.5 to 5.0 mN.m-1). The surfactant promoted a slight change in the melt flow index but not affected the roughness of the samples.
Keywords
References
1 Spadetti, C., Alves da Silva Filho, E., Lopes de Sena, G., & Vital Paixão de Melo, C. (2017). Propriedades térmicas e mecânicas dos compósitos de Polipropileno pós-consumo reforçados com fibras de celulose. Polímeros: Ciência e Tecnologia, 27(número especial), 84-90. https://orcid.org/10.1590/0104-1428.2320.
2 Hutten, I. M. (2016). Handbook of nonwoven filter media. Delray Beach: Elsevier Ltd.
3 Soltani, I., & Macosko, C. W. (2018). Influence of rheology and surface properties on morphology of nanofibers derived from islands – in-the-sea meltblown nonwovens. Polymer, 145, 21-30. http://dx.doi.org/10.1016/j.polymer.2018.04.051.
4 Zhang, H., Liu, J., Zhang, X., Huang, C., & Jin, X. Online prediction of the filtration performance of polypropylene melt blown nonwovens by blue-colored glow. Journal of Applied Polymer Science [Internet]. 2017[cited 2019, October 26];135(10):1307. Available from: https://onlinelibrary.wiley.com/doi/epdf/10.1002/app.45948
5 Chan, C. M. (1994). Polymer surface modification and characterization. Munich: Hanser/Gardner Publications.
6 Lamour, G., Hamraoui, A., Buvailo, A., Xing, Y., Keuleyan, S., Prakash, V., Bafrooei, A. E., & Borguet, E. (2010). Contact angle measurements using a simplified experimental setup. Journal of Chemical Education, 87(12), 1403-07. http://dx.doi.org/10.1021/ed100468u.
7 Andersen, N. K., & Taboryski, R. (2017). Drop shape analysis for determination of dynamic contact angles by double sided elliptical fitting method. Measurement Science & Technology, 28(4), 047003. http://dx.doi.org/10.1088/1361-6501/aa5dcf.
8 Sullins, T., Pillay, S., Komus, A., & Ning, H. (2017). Hemp fiber reinforced polypropylene composites: the effects of material treatments. Composites. Part B, Engineering, 114, 15-22. http://dx.doi.org/10.1016/j.compositesb.2017.02.001.
9 Wang, K., Wang, W., Yang, D., Huo, Y., & Wang, D. (2010). Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma. Applied Surface Science, 256(22), 6859-64. http://dx.doi.org/10.1016/j.apsusc.2010.04.101.
10 Wanke, C. H., Barbosa, L. G., Hübner, J. V. M., Horowitz, F., Mauler, R. S., & Oliveira, R. V. B. D. (2012). Recuperação hidrofóbica de polipropileno tratado por VUV ou plasma. Polímeros, 22(2), 158-63. http://dx.doi.org/10.1590/S0104-14282012005000027.
11 Zhang, D., Sun, C., & Xiao, J. (2006). Effect of selected additives on surface energy of fibers and meltblown nonwovens. Textile Research Journal, 76(3), 261-65. http://dx.doi.org/10.1177/0040517506053905.
12 Kan, M., Kawsaki, H., & Suzumura, F. (2017). A wettability evaluation on super-hydrophobic and hydrophobic surface. In The 4th International Conference on Design Engineering and Science. Aachen, Germany: ICDES. Retrieved from http://www.jsde.or.jp/icdes/proceedings/4th-2017/PDF/162.pdf
13 Brown, P. S., & Bhushan, B. (2017). Liquid-impregnated porous polypropylene surfaces for liquid repellency. Journal of Colloid and Interface Science, 487, 437-443. http://dx.doi.org/10.1016/j.jcis.2016.10.079. PMid:27814555.
14 Dean, J. A. (1999). Lange’s handbook of chemistry. Knoxville: McGraw-Hill, Inc.
15 Ryntz, R. A., & Yaneff, P. V. (2003). Coating of polymers and plastics. New York: Marcel Dekker. http://dx.doi.org/10.1201/9780203912379.
16 Associação Brasileira de Normas Técnicas – ABNT. (2002). ABNT NBR ISO 4287: Especificações geométricas do produto (GPS). Rugosidade: método do perfil: termos, definições e parâmetros da rugosidade. Rio de Janeiro: ABNT.
17 American Society for Testing and Materials – ASTM. (2004). ASTM D1238-04: Standard test method for melt flow rates of thermoplastics by extrusion plastometer. West Conshohocken: ASTM.
18 Wang, J., Bratko, D., & Luzar, A. (2011). Probing surface tension additivity on chemically heterogeneous surfaces by a molecular approach. Proceedings of the National Academy of Sciences of the United States of America, 108(16), 6374-6379. http://dx.doi.org/10.1073/pnas.1014970108. PMid:21460249.
19 Farris, S., Pozzoli, S., Biagioni, P., Duó, L., Mancinelli, S., & Piergiovanni, L. (2010). The fundamentals of flame treatment for the surface activation of polyolefin polymers – A review. Polymer, 51(16), 3591-3605. http://dx.doi.org/10.1016/j.polymer.2010.05.036.
20 Grundke, K., Pöschel, K., Synytska, A., Frenzel, R., Drechsler, A., Nitschke, M., Cordeiro, A. L., Uhlmann, P., & Welzel, P. B. (2015). Experimental studies of contact angle hysteresis phenomena on polymer surfaces: toward the understanding and control of wettability for different applications. Advances in Colloid and Interface Science, 222, 350-376. http://dx.doi.org/10.1016/j.cis.2014.10.012. PMid:25488284.
21 Morrow, N. R. (1975). The effects of surface roughness on contact: Angle with special reference to petroleum recovery. Journal of Canadian Petroleum Technology, 14(04), 42-53. http://dx.doi.org/10.2118/75-04-04.
Received: