Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Review Article

Bio-based additives for thermoplastics

Paoli, Marco Aurelio De; Waldman, Walter Ruggeri

Downloads: 0
Views: 234


Presently, there are significant research efforts being undertaken to produce bio-based chemicals in a cost-effective way. The polymer chemists and engineers are no exception to this. Additives for polymers correspond to a large section of the plastics market and bio-based products can substitute many of them. The scientific literature has a large number of publications focusing on the preparation and testing of bio-based polymer additives; however, the small number of products that reach the market, which are bio-based, does not reflect this. In terms of the global market, the environmentally friendly appeal of bio-based additives alone is not sufficient; the bio-based product must have similar or better performance than the oil-based and be comparable or lower in cost than the existing products. In this review, we focus on bio-based polymer additives that have already reached the market or have a real possibility of reaching the market in a cost-effective way.


thermoplastics; bio-based; additives; renewable; environmentally friendly.


1 Vert, M., Doi, Y., Hellwich, K.-H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations). Pure and Applied Chemistry84(2), 377-410. http://dx.doi.orgb/10.1351/PAC-REC-10-12-04

2 Markets and Markets. (2017). Retrieved in 2017, November 30, from https://www.marketsandmarkets.com/PressReleases/plasticizers.asp 

3 Zion Market Research. (2019). Retrieved in 2019, February 19, from https://www.zionmarketresearch.com/news/bio-plasticizers-market 

4 Holser, R. A. (2008). Transesterification of epoxidized soybean oil to prepare epoxy methyl esters. Industrial Crops and Products27(1), 130-132. http://dx.doi.org/10.1016/j.indcrop.2007.06.001

5 Sienel, G., Rieth, R., & Rowbottom, K. T. (2005). Epoxides. In F. Ullmann. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH. http://dx.doi.org/10.1002/14356007.a09_5311

6 Bueno-Ferrer, C., Garrigós, M. C., & Jiménez, A. (2010). Characterization and thermal stability of poly(vinylchloride) plasticized with epoxidized soybean oil for food packaging. Polymer Degradation & Stability95(11), 2207-2212. http://dx.doi.org/10.1016/j.polymdegradstab.2010.01.027

7 Bouchoul, B., Benaniba, M.T., & Massardier, V. (2017). Thermal and mechanical properties of bio-based plasticizers mixtures on poly(vinyl chloride). Polímeros: Ciência e Tecnologia27(3), 237-246. http://dx.doi.org/10.1590/0104-1428.14216

8 SpecialChem. (2017). Retrieved in 2017, November 30, from https://polymer-additives.specialchem.com/searchsites/searchproducts?q=bioplasticizers 

9 Future Market Insights. (2017). Bio-plasticizers market: global industry analysis and opportunity assessment 2015-2025. Retrieved in 2017, November 30, from https://www.futuremarketinsights.com/reports/bio-plasticizers-market 

10 Hallstar. (2019). Plasthall. Retrieved in 2019, February 20, from https://www.hallstar.com/brand/plasthall/ 

11 Arkema. (2019). Vikoflex® epoxidized vegetable oils. Retrieved in 2019, February 1, from https://www.arkema.com/en/products/product-finder/range-viewer/Vikoflex-epoxidized-vegetable-oils/2/ 

12 ExxonMobil. (2019). Adipate plasticizers. Retrieved in 2019, January 28, from https://www.exxonmobilchemical.com/en/products/plasticizers/adipate-plasticizers 

13 Vertellus. (2019). Dibutyl sebacate. Retrieved in 2019, January 28, from https://www.vertellus.com/products/plastics-polymers/morflex-plasticizers-sebacates-and-solvents/dibutyl-sebacate 

14 PolyOne. (2019). Reflex™ bio-derived plasticizer. Retrieved in 2019, January 28, from http://www.polyone.com/products/plasticizers-synthetic-esters/reflex-bio-derived-plasticizers 

15 Woodward, J. (1724). IV. Præparatio cærulei prussiaci ex germaniâ missa ad Johannem Woodward, M. D. Prof. Med. Gresh. R. S. S. Philosophical Transactions of the Royal Society of London33(381), 15-17. http://dx.doi.org/10.1098/rstl.1724.0005

16 Böhland, T., Brandt, K., Brussaard, H., Calvert, D., Etzrodt, G., Rieck, H., Seeger, O., Wienand, H., Wiese, J., & Buxbaum, G. (2005). Colored pigments. In G. Buxbaum & G. Pfaff (Eds.), Industrial inorganic pigments (pp. 99-162). Weinheim: Wiley‐VCH. http://dx.doi.org/10.1002/3527603735.ch3

17 Farrugia, V. M., Birau, M. M., Iftime, G., & Abraham, B. E. (2015). US Patent No. 9181389B2. Norwalk: Xerox Corporation. Retrieved in 2017, November 30, from https://patentimages.storage.googleapis.com/48/f4/01/21b5ae9d87eae3/US9181389.pdf 

18 Yusuf, M., Shabbir, M., & Mohammad, F. (2017). Natural colorants: historical, processing and sustainable prospects. Natural Products and Bioprospecting7(1), 123-145. http://dx.doi.org/10.1007/s13659-017-0119-9. PMid:28093670. 

19 van den Oever, M. J. A., Boeriu, C. G., Blaauw, R., & van Haveren, J. (2004). Colorants based on renewable resources and food-grade colorants for application in thermoplastics. Journal of Applied Polymer Science92(5), 2961-2969. http://dx.doi.org/10.1002/app.20298

20 PolyOne. (2019). Oncolor™ bio colorants. Retrieved in 2019, January 29, from http://www.polyone.com/products/polymer-colorants/solid-color-masterbatches/oncolor-bio 

21 Burt, S. A., Ojo-Fakunle, V. T. A., Woertman, J., & Veldhuizen, E. J. A. (2014). The natural antimicrobial carvacrol inhibits quorum sensing in chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One9(4), e93414. http://dx.doi.org/10.1371/journal.pone.0093414. PMid:24691035. 

22 Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology48, 51-62. http://dx.doi.org/10.1016/j.tifs.2015.12.001

23 Raafat, D., & Sahl, H.-G. (2009). Chitosan and its antimicrobial potential – a critical literature survey. Microbial Biotechnology2(2), 186-201. http://dx.doi.org/10.1111/j.1751-7915.2008.00080.x. PMid:21261913. 

24 Raafat, D., von Bargen, K., Haas, A., & Sahl, H. G. (2008). Insights into the mode of action of Chitosan as an antibacterial compound. Applied and Environmental Microbiology74(12), 3764-3773. http://dx.doi.org/10.1128/AEM.00453-08. PMid:18456858. 

25 Goy, R. C., Britto, D., & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros: Ciência e Tecnologia19(3), 241-247. http://dx.doi.org/10.1590/S0104-14282009000300013

26 van den Broek, L. A. M., Knoop, J. I. R., Kappen, F. H. J., & Boeriu, C. G. (2015). Chitosan films and blends for packaging material. Carbohydrate Polymers116(2), 237-242. http://dx.doi.org/10.1016/j.carbpol.2014.07.039. PMid:25458295. 

27 Biron, M. (2012). What’s the latest in biocides?. Paris: SpecialChem. Retrieved in 2017, November 30, from https://polymer-additives.specialchem.com/tech-library/article/what-s-the-latest-in-biocides?src=pbsc-4B5267B9-2377-467F-8A9D-9E54C9C26A81-pushbottom-3#P5 

28 Kmiotek, M., Bielinski, D., & Piotrowska, M. (2018). Propolis as an antidegradant and biocidal agent for natural rubber. Journal of Applied Polymer Science135(9), 45911. http://dx.doi.org/10.1002/app.45911

29 Phoenix Plastics. (2019). The plastic additives experts. Retrieved in 2019, February 19, from http://phoenixplastics.com/products/antimicrobial 

30 Anneken, D. J., Both, S., Christoph, R., Fieg, G., Steinberner, U., & Westfechtel, A. (2006). Fatty acids. In F. Ullmann. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. http://dx.doi.org/10.1002/14356007.a10_245.pub21

31 Kobayashi, H., & Fukuoka, A. (2013). Synthesis and utilization of sugar compounds derived from lignocellulosic biomass. Green Chemistry15(7), 1740-1763. http://dx.doi.org/10.1039/c3gc00060e

32 Yamaguchi, A., Hiyoshi, N., Sato, O., & Shirai, M. (2011). Sorbitol dehydration in high temperature liquid water. Green Chemistry13(4), 873-881. http://dx.doi.org/10.1039/c0gc00426j

33 Riken. (2019). Improving agents for plastics. Retrieved in 2019, January 29, from https://www.rikenvitamin.com/chemicals/plastics.html 

34 Croda. (2019). Additives for automotive plastics. Retrieved in 2019, February 7, from https://www.crodapolymeradditives.com/en-gb/products-and-applications/automotive-plastics#tab-collapse-anti-static 

35 Croda. (2019). PET. Retrieved in 2019, January 29, from https://www.crodapolymeradditives.com/en-gb/products-and-applications/pet 

36 Richter, E. (2001). Lubricants. In H. Zweifel (Ed.), Plastics additives handbook (pp. 511-552). Munich: Hanser Publishers. 

37 Beare-Rogers, J., Dieffenbacher, A., & Holm, J. V. (2001). Lexicon of lipid nutrition (IUPAC Technical Report). Pure and Applied Chemistry73(4), 685-744. http://dx.doi.org/10.1351/pac200173040685

38 SpecialChem. (2018). Universal Selector. Retrieved in 2018, May 22, from https://polymer-additives.specialchem.com/selectors/bb-true/c-additives-lubricants-waxes-fatty-acids 

39 Croda. (2019). Expanded polyethylene. Retrieved in 2019, February 1, from https://www.crodapolymeradditives.com/en-gb/products-and-applications/expanded-polyethylene#tab-collapse-processing-aid 

40 Croda. (2019). Film production. Retrieved in 2019, February 1, from https://www.crodapolymeradditives.com/en-gb/products-and-applications/film-production#tab-collapse-slip 

41 Croda. (2019). Wood plastic composites. Retrieved in 2019, February 1, from https://www.crodapolymeradditives.com/en-gb/products-and-applications/wood-plastic-composites#tab-collapse-lubrication 

42 Gay-Lussac, J. L. (1821). Note sur la propriete qu'ont les matieres salines de rendre les tissus incombustibles. In Annales de Chimie et de Physique (p. 211-216). Paris: De L’Imprimerie de Feugueray. Retrieved in 2018, May 22, from https://gallica.bnf.fr/ark:/12148/bpt6k65709933.image 

43 Hindersinn, R. R. (1990). Historical aspects of polymer fire retardance. In L. N. Gordon (Ed.), Fire and polymers (pp. 87-96). Washington: American Chemical Society. http://dx.doi.org/10.1021/bk-1990-0425.ch007

44 DiGangi, J., Blum, A., Bergman, A., de Wit, C. A., Lucas, D., Mortimer, D., Schecter, A., Scheringer, M., Shaw, S. D., & Webster, T. F. (2010). San Antonio statement on brominated and chlorinated flame retardants. Environmental Health Perspectives118(12), A516-A518. http://dx.doi.org/10.1289/ehp.1003089. PMid:21123135.

45 Liu, L., Qian, M., Song, P., Huang, G., Yu, Y., & Fu, S. (2016). Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites. ACS Sustainable Chemistry & Engineering4(4), 2422-2431. http://dx.doi.org/10.1021/acssuschemeng.6b00112

46 Mandlekar, N., Cayla, A., Rault, F., Giraud, S., Salaün, F., Malucelli, G., & Guan, J. (2017). Thermal stability and fire retardant properties of polyamide 11 microcomposites containing different lignins. Industrial & Engineering Chemistry Research56(46), 13704-13714. http://dx.doi.org/10.1021/acs.iecr.7b03085

47 Edser, C. (2017). Fraunhofer LBF develops lignin-based flame retardant from paper manufacturing waste (Business News). Additives for Polymers2017(12), 1-2. http://dx.doi.org/10.1016/S0306-3747(18)30001-0.1 

48 Great Lakes Solutions. (2019). Flame retardants product guide. Retrieved in 2019, February 21, from http://greatlakes.com/deployedfiles/ChemturaV8/GreatLakes/Flame%20Retardants/FR%20Brochures/Flame%20Retardants%20Product%20Guide.pdf 

49 Oliveira, S. V., Araújo, E. M., Pereira, C. M. C. & Leite, A. M. D. (2017). Nanocompósitos de polietileno/argila bentonítica com propriedades antichama. Polímeros: Ciência e Tecnologia27(n.spe), 91-98. http://dx.doi.org/10.1590/0104-1428.2288

50 Costes, L., Laoutid, F., Brohez, S., & Dubois, P. (2017). Bio-based flame retardants: when nature meets fire protection. Materials Science and Engineering R Reports117(7), 1-25. http://dx.doi.org/10.1016/j.mser.2017.04.001

51 Chemistry World. (2018). Fireproof coatings made from DNA. Retrieved in 2018, May 30, from https://www.chemistryworld.com/research/fireproof-coatings-made-from-dna/5941.article 

52 De Paoli, M. A. (2009). Degradação e estabilização de polímeros. São Paulo: Artliber. 

53 Yamauchi, R. (1997). Vitamin E: mechanism of its antioxidant activity. Food Science and Technology International Tokyo3(4), 301-309. http://dx.doi.org/10.3136/fsti9596t9798.3.301

54 Strandberg, C., & Albertsson, A.-C. (2005). Process efficiency and long-term performance of α-tocopherol in film-blown linear low-density polyethylene. Journal of Applied Polymer Science98(6), 2427-2439. http://dx.doi.org/10.1002/app.22435.

55 Renò, F., Bracco, P., Lombardi, F., Boccafoschi, F., Costa, L., & Cannas, M. (2004). The induction of MMP-9 release from granulocytes by vitamin E in UHMWPE. Biomaterials25(6), 995-1001. http://dx.doi.org/10.1016/S0142-9612(03)00623-9. PMid:14615164. 

56 Rodrigues, F. H. A., Feitosa, J. P. A., Ricardo, N. M. P. S., França, F. C. F., & Carioca, J. O. B. (2006). Antioxidant activity of cashew nut shell liquid (CNSL) derivatives on the thermal oxidation of synthetic cis-1,4-polyisoprene. Journal of the Brazilian Chemical Society17(2), 265-271. http://dx.doi.org/10.1590/S0103-50532006000200008.

57 De Paoli, M. A., & Furlan, L. T. (1985). Sugar cane bagasse-lignin as photostabilizer for butadiene rubber. Polymer Degradation & Stability11(4), 327-337. http://dx.doi.org/10.1016/0141-3910(85)90036-9

58 De Paoli, M. A., Rodrigues, M. A., & Furlan, L. T. (1985). Sugar cane bagasse-lignin as stabilizer for rubbers III: Styrene-butadiene rubber and natural rubber. Polymer Degradation & Stability13(4), 337-350. http://dx.doi.org/10.1016/0141-3910(85)90082-5

59 Barbosa, C. A., Maltha, C. R. A., Silva, V. L., & Colodette, J. L. (2008). Determinação da relação siringila/guaiacila da lignina em madeiras de eucalipto por pirólise acoplada à cromatografia gasosa e espectrometria de massas (pi-cg/em). Quimica Nova31(8), 2035-2041. http://dx.doi.org/10.1590/S0100-40422008000800023. [ Links ]ratio: a comparison between methods. Bioresource Technology101(11), 4056-4061. http://dx.doi.org/10.1016/j.biortech.2010.01.012. PMid:20133130. 

61 Gadioli, R., Waldman, W. R., & De Paoli, M. A. (2016). Lignin as a green primary antioxidant for polypropylene. Journal of Applied Polymer Science133(45). http://dx.doi.org/10.1002/app.43558

62 Guilhen, A., Gadioli, R., Fernandes, F. C., Waldman, W. R., & De Paoli, M. A. (2017). High-density green polyethylene biocomposite reinforced with cellulose fibers and using lignin as antioxidant. Journal of Applied Polymer Science134(35), 45219. http://dx.doi.org/10.1002/app.45219

63 Fernandes, F. C., Gadioli, R., Yassitepe, E., & De Paoli, M. A. (2017). Polyamide-6 composites reinforced with cellulose fibers and fabricated by extrusion: effect of fiber bleaching on mechanical properties and stability. Polymer Composites38(2), 299-308. http://dx.doi.org/10.1002/pc.23587

64 Abad, L. V., Relleve, L. S., Aranilla, C. T., Aliganga, A. K., San Diego, C. M., & dela Rosa, A. M. (2002). Natural antioxidants for radiation vulcanization of natural rubber latex. Polymer Degradation & Stability76(2), 275-279. http://dx.doi.org/10.1016/S0141-3910(02)00024-1

65 Struktol TPW426 Technical Data. (2019). Retrieved in 2019, February 20, from http://www.struktol.com/pdfs/TD%20TPW426.pdf 

66 Riken. (2019). Improving agents for plastics. Retrieved in 2019, January 29, from https://www.rikenvitamin.com/chemicals/plastics.html 

67 SpecialChem. (2019). Caplig 770. Retrieved in 2019, February, from https://polymer-additives.specialchem.com/product/a-nanjing-capatue-chemical-caplig-770 

68 Industry Experts. (2017). Glass fiber reinforcements – a global market overview. Retrieved in 2019, May 5, from http://industry-experts.com/verticals/chemicals-and-materials/glass-fiber-reinforcements-a-global-market-overview 

69 Franco, M. F., Gadioli, R., & De Paoli, M. A. (2019). Presence of iron in polymers extruded with corrosive contaminants or abrasive fillers. Polímeros: Ciência e Tecnologia29(2), e2019021. 

70 Oliveux, G., Dandy, L. O., & Leeke, G. A. (2015). Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Progress in Materials Science72(7), 61-99. http://dx.doi.org/10.1016/j.pmatsci.2015.01.004

71 Pereira, P. H. F., Rosa, M. F., Cioffi, M. O., Benini, K. C. C. C., Milanese, A. C., Voorwald, H. J. C., & Mulinari, D. R. (2015). Vegetal fibers in polymeric composites: a review. Polímeros Ciência e Tecnologia25(1), 9-22. http://dx.doi.org/10.1590/0104-1428.1722

72 Mano, B., Araujo, J. R., Waldman, W. R., Spinacé, M. A. S., & De Paoli, M. A. (2013). Mechanical properties, morphology and thermal degradation of a biocomposite of polypropylene and curaua fibers: coupling agent effect. Polímeros Ciência e Tecnologia23(2), 161-168. http://dx.doi.org/10.1590/S0104-14282013005000025

73 Araujo, J. R., Mano, B., Teixeira, G. M., Spinacé, M. A. S., & De Paoli, M. A. (2010). Biomicrofibrilar composites of high density polyethylene reinforced with curaua fibers: mechanical, interfacial and morphological properties. Composites Science and Technology70(11), 1637-1644. http://dx.doi.org/10.1016/j.compscitech.2010.06.006.

74 Santos, P. A., Spinacé, M. A. S., Fermoselli, K. K. G., & De Paoli, M. A. (2007). Polyamide-6/vegetal fiber composite prepared by extrusion and injection molding. Composites. Part A, Applied Science and Manufacturing38(12), 2404-2411. http://dx.doi.org/10.1016/j.compositesa.2007.08.011

75 Spinacé, M. A. S., Janeiro, L. G., Bernardino, F. C., Grossi, T. A., & Paoli, M.-A. D. (2011). Poliolefinas reforçadas com fibras vegetais curtas: sisal x curauá. Polímeros: Ciência e Tecnologia21(3), 168-174. http://dx.doi.org/10.1590/S0104-14282011005000036

76 John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers71(3), 343-364. http://dx.doi.org/10.1016/j.carbpol.2007.05.040.

77 Bengtsson, M., Le Baillif, M., & Oksman, K. (2007). Extrusion and mechanical properties of highly filled cellulose fibre–polypropylene composites. Composites. Part A, Applied Science and Manufacturing38(8), 1922-1931. http://dx.doi.org/10.1016/j.compositesa.2007.03.004

78 Le Baillif, M., & Oksman, K. (2009). The effect of processing on fiber dispersion, fiber length, and thermal degradation of bleached sulfite cellulose fiber polypropylene composites. Journal of Thermoplastic Composite Materials22(2), 115-133. http://dx.doi.org/10.1177/0892705708091608

79 Le Baillif, M., & Echtermeyer, A. (2010). Effect of the preparation of cellulose pellets on the dispersion of cellulose fibers into polypropylene matrix during extrusion. Journal of Applied Polymer Science115(5), 2794-2805. http://dx.doi.org/10.1002/app.30421

80 Gadioli, R., Morais, J. A., Waldman, W. R., & De Paoli, M. A. (2014). The role of lignin in polypropylene composites with semi-bleached cellulose fibers: mechanical properties and its activity as antioxidant. Polymer Degradation & Stability108(6), 23-34. http://dx.doi.org/10.1016/j.polymdegradstab.2014.06.005

81 Stora Enso. (2019). DuraSenseTM prodct family. Retrieved in 2019, February 11, from https://www.storaenso.com/en/products/biocomposites/durasense-product-family 

82 NEC Corporation. (2019). Using bioplastics in products. Retrieved in 2019, February 11, from https://www.nec.com/en/global/eco/product/bioplastic/index.html 

83 Bcomp. (2019). PowerRibsTM. Retrieved in 2019, February 11, from http://www.bcomp.ch/en/products/powerribs 

84 UBQ. (2019). Sustainable materials for a circular economy. Retrieved in 2019, February 11, from https://ubqmaterials.com/materials/

85 Green Science Alliance. (2019). Reseach & products list. Retrieved in 2019, February 11, from https://www.gsalliance.co.jp/en/product/page/2/1 

86 Francis, S. (Ed.). (2019). Green Science Alliance Co. Ltd. manufactures new nano cellulose composites. Composites World. Retrieved in 2019, February 11, from https://www.compositesworld.com/news/green-science-alliance-co-ltd-manufactures-new-nano-cellulose-composites 

5e8d58ce0e8825f149c9ee3c polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections