Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Extraction and analysis of the parietal polysaccharides of acorn pericarps from Quercus trees

Mébarki, Moubarek; Hachem, Kadda; Faugeron-Girard, Céline; Mezemaze, Riad el Houari; Kaid-Harche, Meriem

Downloads: 0
Views: 38


Acorns produced by Quercus trees are currently underexploited and undervalued. To evaluate the commercial and health benefits of acorns, we examined the cell wall components of acorn pericarps from Quercus suber and Quercus ilex, growing in North-Western Algeria. Acorn pericarps were sequentially extracted and the polysaccharide fractions were analyzed by gas liquid chromatography and Fourier-transform infrared spectroscopy. The lignocellulosic fraction was the major component of Q. suber and Q. ilex cell walls (37.19% and 48.95%, respectively). Lower amounts of pectins and hemicelluloses were also found in both species. Hemicellulose extracts from the two species contained xylose as the major monosaccharide (ranging from 36.7% to 49.4%). Galacturonic acid was the major component of hot water- or ammonium oxalate-extracted pectins from both species (ranging from 20.6% to 46.8%). The results reported in this paper reveal that acorn pericarp cell walls from these two oak could be potential sources of bioactive compounds.


Quercus sp.; pericarp; polysaccharides.


1 Sarir, R., & Benmahioul, B. (2017). Etude comparative de la croissance végétative et du développement de jeunes semis de trois espèces de chênes (chêne vert, chêne liège et chêne zéen) cultivés en pépinière. Agriculture and Forestry Journal1, 42-48. 

2 Charef, M., Yousfi, M., Saidi, M., & Stocker, P. (2008). Determination of the fatty acid composition of acorn (Quercus), Pistacia lentiscus seeds growing in Algeria. Journal of the American Oil Chemists’ Society85(10), 921-924. http://dx.doi.org/10.1007/s11746-008-1283-1

3 Yang, J., Tu, J., Liu, H., Wen, L., Jiang, Y., & Yang, B. (2019). Identification of an immunostimulatory polysaccharide in banana. Food Chemistry277, 46-53. http://dx.doi.org/10.1016/j.foodchem.2018.10.043. PMid:30502171.

4 Ramawat, K. G., & Mérillon, J. M. (2015). Polysaccharides. New York: Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-16298-0

5 Tadayoni, M., Sheikh-Zeinoddin, M., & Soleimanian-Zad, S. (2015). Isolation of bioactive polysaccharide from acorn and evaluation of its functional properties. International Journal of Biological Macromolecules72, 179-184. http://dx.doi.org/10.1016/j.ijbiomac.2014.08.015. PMid:25159883. 

6 Vinha, A. F., Costa, A. S. G., Barreira, J. C. M., Pacheco, R., & Oliveira, M. B. P. P. (2016). Chemical and antioxidant profiles of acorn tissues from Quercus spp.: potential as new industrial raw materials. Industrial Crops and Products94, 143-151. http://dx.doi.org/10.1016/j.indcrop.2016.08.027

7 Hachem, K., Faugeron, C., Kaid-Harche, M., & Gloaguen, V. (2016). Structural investigation of cell wall xylan polysaccharides from the leaves of algerian Argania spinosa. Molecules (Basel, Switzerland)21(11), 1587. http://dx.doi.org/10.3390/molecules21111587. PMid:27879638.

8 DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry28(3), 350-356. http://dx.doi.org/10.1021/ac60111a017

9 Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry54(2), 484-489. http://dx.doi.org/10.1016/0003-2697(73)90377-1. PMid:4269305. 

10 Montreuil, J., Spik, G., Chosson, A., Segard, E., & Scheppler, N. (1963). Methods of study of glycoproteins. Journal de Pharmacie de Belgique18, 529-546. PMid:14096752. 

11 Stitt, M., & Zeeman, S. C. (2012). Starch turnover: pathways, regulation and role in growth. Current Opinion in Plant Biology15(3), 282-292. http://dx.doi.org/10.1016/j.pbi.2012.03.016. PMid:22541711. 

12 Dawczynski, C., Schubert, R., & Jahreis, G. (2007). Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry103(3), 891-899. http://dx.doi.org/10.1016/j.foodchem.2006.09.041

13 Alba, K., & Kontogiorgos, V. (2017). Pectin at the oil-water interface: relationship of molecular composition and structure to functionality. Food Hydrocolloids68, 211-218. http://dx.doi.org/10.1016/j.foodhyd.2016.07.026

14 Habibi, Y., Heux, L., Mahrouz, M., & Vignon, M. R. (2008). Morphological and structural study of seed pericarp of Opuntia ficus-indica prickly pear fruits. Carbohydrate Polymers72(1), 102-112. http://dx.doi.org/10.1016/j.carbpol.2007.07.032

15 Habibi, Y., & Vignon, M. R. (2005). Isolation and characterization of xylans from seed pericarp of Argania spinosa fruit. Carbohydrate Research340(7), 1431-1436. http://dx.doi.org/10.1016/j.carres.2005.01.039. PMid:15854618. 

16 Ebringerová, A., Hromádková, Z., Petráková, E., & Hricovíni, M. (1990). Structural features of a water-soluble L-arabino-D-xylan from rye bran. Carbohydrate Research198(1), 57-66. http://dx.doi.org/10.1016/0008-6215(90)84276-Z. PMid:2162256. 

17 Xu, F., Sun, J. X., Geng, Z. C., Liu, C. F., Ren, J. L., Sun, R. C., Fowler, P., & Baird, M. S. (2007). Comparative study of water-soluble and alkali-soluble hemicelluloses from perennial ryegrass leaves (Lolium peree). Carbohydrate Polymers67(1), 56-65. http://dx.doi.org/10.1016/j.carbpol.2006.04.014

18 Hu, R., Xu, Y., Yu, C., He, K., Tang, Q., Jia, C., He, G., Wang, X., Kong, Y., & Zhou, G. (2017). Transcriptome analysis of genes involved in secondary cell wall biosynthesis in developing internodes of Miscanthus lutarioriparius. Scientific Reports7(1), 9034. http://dx.doi.org/10.1038/s41598-017-08690-8. PMid:28831170. 

19 Yang, B., Jiang, Y., Zhao, M., Chen, F., Wang, R., Chen, Y., & Zhang, D. (2009). Structural characterisation of polysaccharides purified from longan (Dimocarpus longan Lour.) fruit pericarp. Food Chemistry115(2), 609-614. http://dx.doi.org/10.1016/j.foodchem.2008.12.082

20 Fernando, I. P. S., Sanjeewa, K. K. A., Samarakoon, K. W., Lee, W. W., Kim, H.-S., Kim, E.-A., Gunasekara, U. K. D. S. S., Abeytunga, D. T. U., Nanayakkara, C., de Silva, E. D., Lee, H.-S., & Jeon, Y.-J. (2017). FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae. Algae - Korean Phycological Society32(1), 75-86. http://dx.doi.org/10.4490/algae.2017.32.12.1

21 Brito, A. C. F., Silva, D. A., Paula, R. C. M., & Feitosa, J. P. A. (2004). Sterculia striata exudate polysaccharide: characterization, rheological properties and comparison with Sterculia urens (karaya) polysaccharide. Polymer International53(8), 1025-1032. http://dx.doi.org/10.1002/pi.1468

22 Pasandide, B., Khodaiyan, F., Mousavi, Z. E., & Hosseini, S. S. (2017). Optimization of aqueous pectin extraction from Citrus medica peel. Carbohydrate Polymers178, 27-33. http://dx.doi.org/10.1016/j.carbpol.2017.08.098. PMid:29050593. 

23 Morais, E. S., Mendonça, P. V., Coelho, J. F. J., Freire, M. G., Freire, C. S. R., Coutinho, J. A. P., & Silvestre, A. J. D. (2018). Deep eutectic solvent aqueous solutions as efficient media for the solubilization of hardwood xylans. ChemSusChem11(4), 753-762. http://dx.doi.org/10.1002/cssc.201702007. PMid:29345423. 

5e8e1ebc0e88255b111ad513 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections