Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Grafting polypropylene over hollow glass microspheres by reactive extrusion

Baptista, Carlos André; Canevarolo, Sebastião Vicente

Downloads: 0
Views: 140


Hollow glass microspheres HGM are light, round, hollow, hydrophilic microspheres used to produce polyolefin composites with reduced density. To maintain mechanical strength, it is necessary to improve the adhesion between the polymer matrix and the microspheres, which is done by a compatibilizer. For polypropylene composites a maleic anhydride grafted polypropylene copolymer PP-g-MAH is employed. The melt mixing is done in a reactive extrusion when the maleic group of the compatibilizer reacts with hydroxyl groups present at the microspheres’ surface, grafting a long PP chain. The aim of this work is to quantify the esterification grafting conversion and its efficiency during the reactive extrusion to the formation of PP/HGM composites compatibilized with PP-g-MAH. Techniques like TGA, FTIR and SEM were used to quantify the grafted PP content formed and the efficiency of the esterification reaction, which is mainly dependent of the compatibilizer concentration and reactive extrusion temperature.


hollow glass microspheres; maleic anhydride; grafted polypropylene; reactive extrusion.


1 Tzoganakis, C. (1989). Reactive extrusion of polymers: a review. Advances in Polymer Technology9(4), 321-330. http://dx.doi.org/10.1002/adv.1989.060090406

2 Xanthos, M., & Dagli, S. S. (1991). Compatibilization of polymer blends by reactive processing. Polymer Engineering and Science31(13), 929-935. http://dx.doi.org/10.1002/pen.760311302

3 Tjong, S. C., & Meng, Y. (1997). The effect of compatibilization of maleated polypropylene on a blend of polyamide-6 and liquid crystalline copolyester. Polymer International42(2), 209-217. http://dx.doi.org/10.1002/(SICI)1097-0126(199702)42:2<209::AID-PI700>3.0.CO;2-P

4 Zhihui, Y., Yajie, Z., Xiaomin, Z., & Jinghua, Y. (1998). Effects of the compatibilizer PP-g-GMA on morphology and mechanical properties of PP/PC blends. Polymer39(3), 547-551. http://dx.doi.org/10.1016/S0032-3861(97)00299-1

5 Sun, Y. J., Hu, G. H., Lambla, M., & Kotlar, H. K. (1996). In situ compatibilization of polypropylene and poly(butylene terephthalate) polymer blends by one-step reactive extrusion. Polymer37(18), 4119-4127. http://dx.doi.org/10.1016/0032-3861(96)00229-7

6 Shashidhara, G. M., Biswas, D., Shubhalaksmi Pai, B., Kadiyala, A. K., Wasim Feroze, G. S., & Ganesh, M. (2009). Effect of PP-g-MAH compatibilizer content in polypropylene/nylon-6 blends. Polymer Bulletin63(1), 147-157. http://dx.doi.org/10.1007/s00289-009-0074-7

7 Sathe, S. N., Rao, G. S. S., & Devi, S. (1994). Grafting of maleic anhydride onto polypropylene: synthesis and characterization. Journal of Applied Polymer Science53(2), 239-245. http://dx.doi.org/10.1002/app.1994.070530212

8 Bledzki, A. K., Reihmane, S., & Gassan, J. (1996). Properties and modification methods for vegetable fibers for natural fiber composites. Journal of Applied Polymer Science59(8), 1329-1336. http://dx.doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0

9 Gaylord, N. G., & Mishra, M. K. (1983). Nondegradative reaction of maleic anhydride and molten polypropylene in the presence of peroxides. Journal of Polymer Science. Polymer Letters Edition21(1), 23-30. http://dx.doi.org/10.1002/pol.1983.130210104

10 Shi, D., Yang, J., Yao, Z., Wang, Y., Huang, H., Jing, W., Yin, J., & Costa, G. (2001). Functionalization of isotactic polypropylene with maleic anhydride by reactive extrusion: mechanism of melt grafting. Polymer42(13), 5549-5557. http://dx.doi.org/10.1016/S0032-3861(01)00069-6

11 Moad, G. (1999). Synthesis of polyolefin graft copolymers by reactive extrusion. Progress in Polymer Science (Oxford)24(1), 81-142. http://dx.doi.org/10.1016/S0079-6700(98)00017-3

12 Minoura, Y., Ueda, M., Mizunuma, S., & Oba, M. (1969). The reaction of polypropylene with maleic anhydride. Journal of Applied Polymer Science13(8), 1625-1640. http://dx.doi.org/10.1002/app.1969.070130805

13 Saheb, D. N., & Jog, J. P. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology18(4), 351-363. http://dx.doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X

14 Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. Journal of Polymers and the Environment15(1), 25-33. http://dx.doi.org/10.1007/s10924-006-0042-3

15 Kumar, N., Mireja, S., Khandelwal, V., Arun, B., & Manik, G. (2016). Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: a strength analysis and morphological study. Composites. Part B, Engineering109, 277-285. http://dx.doi.org/10.1016/j.compositesb.2016.10.052

16 Mäder, E., Jacobasch, H. J., Grundke, K., & Gietzelt, T. (1996). Influence of an optimized interphase on the properties of polypropylene/glass fibre composites. Composites. Part A, Applied Science and Manufacturing27(9), 907-912. http://dx.doi.org/10.1016/1359-835X(96)00044-9

17 Thomason, J. L., & Schoolenberg, G. E. (1994). An investigation of glass fibre/polypropylene interface strength and its effect on composite properties. Composites25(3), 197-203. http://dx.doi.org/10.1016/0010-4361(94)90017-5

18 Felix, J. M., & Gatenholm, P. (1991). The nature of adhesion in composites of modified cellulose fibers and polypropylene. Journal of Applied Polymer Science42(3), 609-620. http://dx.doi.org/10.1002/app.1991.070420307

19 Yalcin, B., & Amos, S. E. (2015). Hollow glass microspheres in thermoplastics. In S. E. Amos & B. Yalcin (Eds.), Hollow glass microspheres for plastics, elastomers, and adhesives compounds (Plastics Design Library, chap. 3, pp. 35-105). Elsevier. http://dx.doi.org/10.1016/B978-1-4557-7443-2.00003-7

20 Liang, J. Z. (2014). Estimation of thermal conductivity for polypropylene/hollow glass bead composites. Composites. Part B, Engineering56, 431-434. http://dx.doi.org/10.1016/j.compositesb.2013.08.072.

21 Patankar, S. N., Das, A., & Kranov, Y. A. (2009). Interface engineering via compatibilization in HDPE composite reinforced with sodium borosilicate hollow glass microspheres. Composites. Part A, Applied Science and Manufacturing40(6–7), 897-903. http://dx.doi.org/10.1016/j.compositesa.2009.04.016

22 Zhou, Y., Rangari, V., Mahfuz, H., Jeelani, S., & Mallick, P. K. (2005). Experimental study on thermal and mechanical behavior of polypropylene, talc/polypropylene and polypropylene/clay nanocomposites. Materials Science and Engineering A402(1-2), 109-117. http://dx.doi.org/10.1016/j.msea.2005.04.014

23 Zhu, B. L., Zheng, H., Wang, J., Ma, J., Wu, J., & Wu, R. (2014). Tailoring of thermal and dieletric properties of LDPE-matrix composites by the volume fraction, density, and surface modification of hollow glass microsphere filler. Composites. Part B, Engineering58, 91-102. http://dx.doi.org/10.1016/j.compositesb.2013.10.029

24 Zhu, B. L., Wang, J., Zheng, H., Ma, J., Wu, J., & Wu, R. (2015). Investigation of thermal conductivity and dielectric properties of LDPE-matrix composites filled with hybrid filler of hollow glass microspheres and nitride particles. Composites. Part B, Engineering69, 496-506. http://dx.doi.org/10.1016/j.compositesb.2014.10.035

25 Liang, J.-Z., & Jiang, X.-H. (2012). Soundproofing effect of polypropylene/inorganic particle composites. Composites. Part B, Engineering43(4), 1995-1998. http://dx.doi.org/10.1016/j.compositesb.2012.02.020

26 Liang, J. (2002). Tensile and impact properties of hollow glass bead- filled PVC composites. Macromolecular Materials and Engineering287(9), 588-591. http://dx.doi.org/10.1002/1439-2054(20020901)287:9<588::AID-MAME588>3.0.CO;2-6

27 Liang, J.-Z. (2005). Mechanical properties of hollow glass bead-filled ABS composites. Journal of Thermoplastic Composite Materials18(5), 407-416. http://dx.doi.org/10.1177/0892705705051899

28 Yalcin, B., Gunes, I. S., Carvalho, G. B., & Williams, M. J. (2016). US20160326352A1. United States: United States Patent and Trademark Office.

29 Patankar, S. N., & Kranov, Y. A. (2010). Hollow glass microsphere HDPE composites for low energy sustainability. Materials Science and Engineering A527(6), 1361-1366. http://dx.doi.org/10.1016/j.msea.2009.10.019.

30 Hu, G. H., & Lindt, J. T. (1993). Monoesterification of styrene–maleic anhydride copolymers with alcohols in ethyl benzene: catalysis and kinetics. Journal of Polymer Science. Part A, Polymer Chemistry31(3), 691-700. http://dx.doi.org/10.1002/pola.1993.080310313

31 Feldman, D., & Lacasse, M. A. (1994). Polymer–filler interaction in polyurethane kraft lignin polyblends. Journal of Applied Polymer Science51(4), 701-709. http://dx.doi.org/10.1002/app.1994.070510416

32 Kuptsov, A. H., & Zhizhin, G. N. (1998). Handbook of fourier transform raman and infrared spectra of polymers. Amsterdam: Elsevier Science. 

33 Orr, C. A., Cernohous, J. J., Guegan, P., Hirao, A., Jeon, H. K., & Macosko, C. W. (2001). Homogeneous reactive coupling of terminally functional polymers. Polymer42(19), 8171-8178. http://dx.doi.org/10.1016/S0032-3861(01)00329-9

5e8e1dc20e8825bd0d1ad513 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections