Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.06020
Polímeros: Ciência e Tecnologia
Original Article

Surface functionalization of polyvinyl chloride by plasma immersion techniques

Péricles Lopes Sant’Ana; José Roberto Ribeiro Bortoleto; Nilson Cristino da Cruz; Elidiane Cipriano Rangel; Steven Frederick Durrant; Wido Herwig Schreiner

Downloads: 0
Views: 521

Abstract

In this work we discuss the wettability, chemical composition, surface morphology and optical transmittance of polyvinyl chloride (PVC) samples treated by Plasma Immersion and by Plasma Immersion Ion Implantation. The total pressure of N2 or SF6 was 6.66 Pa, for treatments of 900 s, applied rf power of 25 and 100 W, and the substrate temperature was about 298 K. In PIII, high voltage pulses of -2400 V at a cycle time of 30 µs and a frequency of 300 Hz were used. The wettability of the samples was assessed via contact angle measurements, which indicated either hydrophilicity or hydrophobicity, depending on the plasma composition. X-ray Photoelectron Spectroscopic analysis confirmed strong fluorine attachment to the surface after treatments using SF6 plasmas, and the presence of oxygen after treatments using nitrogen plasmas. Atomic Force Microscopy images showed that the roughness Rrms, depends on the plasma conditions. Optical transmittance in the visible region, T (λ), was increased by plasma immersion. The greatest contact angle observed was 142º (PI cathode), while the highest roughness was 213.2 nm. The highest optical transmittance in the visible region was around to 90% (PI anode).

 

Keywords

PVC, plasma immersion techniques, contact angle, XPS, AFM, optical transmittance

References

1 Juang, R. S., Hou, W. T., Huang, Y. C., Tseng, Y. C., & Huang, C. (2016). Surface hydrophilic modifications on polypropylene membranes by remote methane/oxygen mixture plasma discharges. Journal of the Taiwan Institute of Chemical Engineers, 65, 420-426. http://dx.doi.org/10.1016/j.jtice.2016.04.032.

2 Nazarov, V. G., Stolyarov, V. P., & Gagarin, M. V. (2014). Simulation of chemical modification of polymer surface. Journal of Fluorine Chemistry, 161, 120-127. http://dx.doi.org/10.1016/j.jfluchem.2014.01.021.

3 Kharitonov, A. P., Simbirtseva, G. V., Tressaud, A., Durand, E., Labrugère, C., & Dubois, M. (2014). Comparison of the surface modifications of polymers induced by direct fluorination and rf-plasma using fluorinated gases. Journal of Fluorine Chemistry, 165, 49-60. http://dx.doi.org/10.1016/j.jfluchem.2014.05.002.

4 Gancarz, I., Bryjak, M., Kujawski, J., Wolska, J., Kujawa, J., & Kujawski, W. (2015). Plasma deposited fluorinated films on porous membranes. Materials Chemistry and Physics, 151, 233-242. http://dx.doi.org/10.1016/j.matchemphys.2014.11.059.

5 Sant’Ana, P. L., Bortoleto, J. R. R., Cruz, N. C., Rangel, E. C., & Durrant, S. F. (2017). Study of wettability and optical transparency of PET polymer modified by plasma immersion techniques. Revista Brasileira de Aplicações de Vácuo, 36(2), 68-74. http://dx.doi.org/10.17563/rbav.v36i2.1050.

6 Sant’Ana, P. L., Prestes, S. M. D., Mancini, S. D., Rangel, R. C., Bortoleto, J. R. R., Cruz, N. C., Rangel, E. C., & Durrant, S. F. (2019). Comparative analysis between the degree of wettability of recycled PVC and PET polymers treated by immersion or deposition of organic films in fluorinated plasmas. Revista Brasileira de Aplicações de Vácuo, 37(3), 120-128. http://dx.doi.org/10.17563/rbav.v37i3.1115.

7 Sant’Ana, P. L., Bortoleto, J. R. R., Rangel, E. C., Cruz, N. C., Durrant, S. F., Botti, L. C. M., Anjos, C. R., Teixeira, V., Azevedo, S., Silva, C. I., Soares, N. F. F., & Medeiros, E. A. A. (2018). Surface properties of PET polymer treated by plasma immersion techniques for food packaging. International Journal of Nano Research, 1(1), 33-41. Retrieved in 2020, August 17, from https://www.innovationinfo.org/international-journal-of-nano-research/article/Surface-Properties-of-PET-Polymer-Treated-by-Plasma-Immersion-Techniques-for-Food-Packaging

8 Sant’Ana, P. L., Bortoleto, J. R. R., Cruz, N. C., Rangel, E. C., Durrant, S. F., Botti, L. C. M., Anjos, C. A. R., Medeiros, E. A. A., Soares, N. F. F., Azevedo, S., Teixeira, V., Carneiro, J., & Silva, C. I. (2018). Surface properties and morphology of PET treated by plasma immersion ion implantation for food packaging. Nanomedicine & Nanotechnology Open Access, 3(3), 1-13. http://dx.doi.org/10.23880/NNOA-16000145.

9 Sant’Ana, P. L. (2018). Polymers treated by plasma for optical devices and food packaging. Mauritius: Scholar’s Press.

10 Cruz, S. A., Zanin, M., Nascente, P. A. P., & Bica de Moraes, M. A. (2010). Superficial modification in recycled PET by plasma etching for food packaging. Journal of Applied Polymer Science, 115(5), 2728-2733. http://dx.doi.org/10.1002/app.29958.

11 Milella, A., Colapricio, V., Favia, P., Iacobelli, L., & d’Agostino, R. (2001). Plasma treatments of polymers for reducing ageing. In Proceedings of the 15th International Symposium on Plasma Chemistry (pp. 2416-2420). Orléans, France: International Plasma Chemistry Society. Retrieved in 2020, August 17, from https://www.ispc-conference.org/ispcdocs/ispc15/content/15/15-2416.pdf

12 Foerch, R., Kill, G., & Walzak, M. (1993). Plasma surface modification of polypropylene: shortterm vs. Long-term plasma treatment. Journal of Adhesion Science and Technology, 7(10), 1077-1089. http://dx.doi.org/10.1163/156856193X00592.

13 Dong, H., & Bell, T. (1999). State-of-the-art overview. Ion beam surface modification of polymer towards improving tribological properties. Surface and Coatings Technology, 111(1), 29-40. http://dx.doi.org/10.1016/S0257-8972(98)00698-7.

14 Huang, C., Ma, W. C., Tsai, C. Y., Hou, W. T., & Juang, R. S. (2013). Surface modification of polytetrafluorethylene membranes by radio frequency methane/nitrogen mixture plasma polymerization. Surface and Coatings Technology, 231, 42-46. http://dx.doi.org/10.1016/j.surfcoat.2012.03.005.

15 Sadeek, S. A. (2005). Synthesis, thermogravimetric analysis, infrared, electronic and mass spectra of Mn(II), Co(II) and Fe(III) norfloxacin complexes. Journal of Molecular Structure, 753(1-3), 1-12. http://dx.doi.org/10.1016/j.molstruc.2005.06.011.

16 Zha, J., Ali, S. S., Peyroux, J., Batisse, N., Claves, D., Dubois, M., Kharitonov, A. P., Monier, G., Darmanin, T., Guittard, F., & Alekseiko, L. N. (2017). Superhydrophobic of polymer films via fluorine atoms covalent attachment and surface nano-texturing. Journal of Fluorine Chemistry, 200, 123-132. http://dx.doi.org/10.1016/j.jfluchem.2017.06.011.

17 Rangel, E. C., dos Santos, N. M., Bortoleto, J. R. R., Durrant, S. F., Schreiner, W. H., Honda, R. Y., Rangel, R. C. C., & Cruz, N. C. (2006). Treatment of PVC using an alternative low energy ion bombardment procedure. Applied Surface Science, 258(5), 1854-1861. http://dx.doi.org/10.1016/j.apsusc.2011.10.061.

18 Nakae, H., Iuni, R., Hirata, Y., & Saito, H. (1998). Effects of surface roughness on wettability. Acta Materialia, 46(7), 2313-2318. http://dx.doi.org/10.1016/S1359-6454(97)00387-X.

19 Hazlett, R. D. (1992). On surface roughness effects in wetting phenomena. Journal of Adhesion Science and Technology, 6(6), 625-633. http://dx.doi.org/10.1163/156856192X01006.

20 D’Sa, R. A., Burke, G. A., & Meenan, B. J. (2010). Protein adhesion and cell response on atmospheric pressure dielectric barrier discharge-modified polymer surfaces. Acta Biomaterialia, 6(7), 2609-2620. http://dx.doi.org/10.1016/j.actbio.2010.01.015. PMid:20096386.

21 Sant’Ana, P. L. (2014). Commercial polymers treated by plasma for optical devices and food packaging (Doctoral thesis). Universidade Estadual Paulista, Sorocaba.

22 Vandencasteele, N., Fairbrother, H., & Reniers, F. (2005). Selected effect of the ions and the neutrals in the plasma treatment of PTFE surfaces: an OES‐AFM‐contact angle and XPS study. Plasma Processes and Polymers, 2(6), 493-500. http://dx.doi.org/10.1002/ppap.200500010.

23 Gengenbach, T. R., & Griesser, H. J. (1999). Post-deposition ageing reactions differ markedly between plasma polymers deposited from siloxane and silazane monomers. Polymer, 40(18), 5079-5094. http://dx.doi.org/10.1016/S0032-3861(98)00727-7.

24 Yasuda, H., Sharma, A., & Yasuda, T. (1981). Effect of orientation and mobility of polymer molecules at surfaces on contact angle and its hysteresis. Journal of Polymer Science. Polymer Physics Edition, 19(9), 1285-1291. http://dx.doi.org/10.1002/pol.1981.180190901.

25 Chu, P. K. (2004). Recent Developments and applications of plasma immersion ion implantation (PIII). Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures : Processing, Measurement, and Phenomena : An Official Journal of the American Vacuum Society, 22(1), 289-296. http://dx.doi.org/10.1116/1.1632920.

26 Chu, P. K., Tang, B. Y., Wang, L. P., Wang, X. F., Wang, S. Y., & Huang, N. (2001). Third-generation plasma immersion ion implanter for biomedical materials and research. The Review of Scientific Instruments, 72(3), 1660-1665. http://dx.doi.org/10.1063/1.1340029.

27 Guruvenket, S., Rao, G. M., Komath, M., & Raichur, A. M. (2004). Plasma surface modification of polystyrene and polyethylene. Applied Surface Science, 236(1–4), 278-284. http://dx.doi.org/10.1016/j.apsusc.2004.04.033.

28 Triandafillu, K., Balazs, D. J., Aronsson, B. O., Descouts, P., Tu Quoc, P., van Delden, C., Mathieu, H. J., & Harms, H. (2003). Adhesion of pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices. Biomaterials, 24(8), 1507-1518. http://dx.doi.org/10.1016/S0142-9612(02)00515-X. PMid:12527292.

29 Park, Y. W., & Inagaki, N. (2003). Surface modification of poly (vinylidene fluoride) film by remote Ar, H2, and O2 plasmas. Polymer, 44(5), 1569-1575. http://dx.doi.org/10.1016/S0032-3861(02)00872-8.

30 Zhang, W., Chu, P. K., Ji, J., Zhang, Y., Liu, X., Fu, R. K., Ha, P. C., & Yan, Q. (2006). Plasma surface modification of poly vinyl chloride for improvement of antibacterial properties. Biomaterials, 27(1), 44-51. http://dx.doi.org/10.1016/j.biomaterials.2005.05.067. PMid:16005957.

31 Santjojo, D. J., Istiroyah, T., & Aizawa, T. (2015). Dynamics of nitrogen and hydrogen species in a high rate plasma nitriding of martensitic stainless steel. In: Proceedings of the 9th South East Asia Technical University Consortium - SEATUC (pp. 311-314). Nakhon Ratchasima, Thailand: Suranaree University of Technology.

32 Choudhury, A. J., Barve, S. A., Chutia, J., Pal, A. R., Chowdhury, D., Kishore, R., Jagannath, Mithal, N., Pandey, M., & Patil, D. S. (2011). Investigations of the hydrophobic and scratch resistance behavior of polystyrene films deposited on bell metal using RF-PACVD process. Applied Surface Science, 257(9), 4211-4218. http://dx.doi.org/10.1016/j.apsusc.2010.12.022.

33 Klapperich, C., Komvopoulos, K., & Pruitt, K. (1999). Tribological properties and microstructure evolution of ultra-high molecular weight polyethylene. Journal of Tribology, 121(2), 394-402. http://dx.doi.org/10.1115/1.2833952.

34 Lee, E. H., Rao, G. R., & Mansur, L. (1996). Super-hard-surfaced polymers by high-energy ion-beam irradiation. Trends in Polymer Science (Regular Ed.), 4(7), 229-237.

35 Lee, E. H. (1999).Ion-beam modification of polymeric materials – fundamental principles and applications. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 151(1-4), 29-41. http://dx.doi.org/10.1016/S0168-583X(99)00129-9.
 

6085c155a953954ad0263f42 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections