Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.05920
Polímeros: Ciência e Tecnologia
Original Article

Reactive compatibilization effect of graphene oxide reinforced butyl rubber nanocomposites

Sathishranganathan Chinnasamy; Rajasekar Rathanasamy; Harikrishna Kumar Mohan Kumar; Prakash Maran Jeganathan; Sathish Kumar Palaniappan; Samir Kumar Pal

Downloads: 0
Views: 530

Abstract

The objective of this work is to develop graphene oxide (GO) incorporated butyl rubber (IIR) nanocomposites by three different methods: direct addition approach (DAAM), single step method (SSM) and two step method (TSM). Chlorobutyl rubber was used as a compatibilizer in SSM and TSM. Mechanical properties of developed nanocomposites was increased and gas permeability co-efficient was decreased up on addition of GO content in IIR matrix. Maximum technical properties was achieved for the nanocomposite with 1.6 wt.% of GO in all methods was achieved due to better interfacial bonding with IIR matrix. When GO content increases above 1.6 wt.% in IIR matrix leads to agglomeration which resulted in deterioration of mechanical properties. HR-TEM studies revealed that nanocomposites prepared by TSM shows exfoliated structure of GO in IIR matrix due to homogenous distribution when compared to the nanocomposites prepared with DAAM and SSM.

 

Keywords

butyl rubber, graphene oxide, nanocomposite, mechanical

References

1 Nikje, M. M. A., Moghaddam, S. T., & Noruzian, M. (2016). Preparation of novel magnetic polyurethane foam nanocomposites by using core-shell nanoparticles. Polímeros: Ciência e Tecnologia, 26(4), 297-303. http://dx.doi.org/10.1590/0104-1428.2193.

2 Arayapranee, W., & Rempel, G. L. (2008). Morphology and mechanical properties of natural rubber and styrene-grafted natural rubber latex compounds. Journal of Applied Polymer Science, 109(3), 1395-1402. http://dx.doi.org/10.1002/app.28217.

3 Guo, H., Jerrams, S., Xu, Z., Zhou, Y., Jiang, L., Zhang, L., Liu, L., & Wen, S. (2020). Enhanced fatigue and durability of carbon black/natural rubber composites reinforced with graphene oxide and carbon nanotubes. Engineering Fracture Mechanics, 223, 106764. http://dx.doi.org/10.1016/j.engfracmech.2019.106764.

4 Corrêa, H. L., Sousa, A. M. F., & Furtado, C. R. G. (2015). Natural rubber latex: determination and interpretation of flow curves. Polímeros: Ciência e Tecnologia, 25(4), 365-370. http://dx.doi.org/10.1590/0104-1428.1947.

5 Rajasekar, R., & Das, C. (2011). Development of butyl rubber nanocomposites in presence and absence of compatibiliser. Plastics, Rubber and Composites, 40(8), 407-412. http://dx.doi.org/10.1179/1743289810Y.0000000039.

6 Wu, J., Huang, G., Pan, Q., Zheng, J., Zhu, Y., & Wang, B. (2007). An investigation on the molecular mobility through the glass transition of chlorinated butyl rubber. Polymer, 48(26), 7653-7659. http://dx.doi.org/10.1016/j.polymer.2007.11.006.

7 Zhu, Y., Zhou, W., Wang, J., Wang, B., Wu, J., & Huang, G. (2007). Study on damping mechanism based on the free volume for CIIR by PALS. The Journal of Physical Chemistry B, 111(39), 11388-11392. http://dx.doi.org/10.1021/jp071670v. PMid:17850129.

8 Silva, V. M., Nunes, R. C. R., & Sousa, A. M. F. (2017). Epoxidized natural rubber and hydrotalcite compounds: rheological and thermal characterization. Polímeros: Ciência e Tecnologia, 27(3), 208-212. http://dx.doi.org/10.1590/0104-1428.03416.

9 Malas, A., Das, C. K., Das, A., & Heinrich, G. (2012). Development of expanded graphite filled natural rubber vulcanizates in presence and absence of carbon black: mechanical, thermal and morphological properties. Materials & Design, 39, 410-417. http://dx.doi.org/10.1016/j.matdes.2012.03.007.

10 Dittrich, B., Wartig, K. A., Hofmann, D., Mülhaupt, R., & Schartel, B. (2015). The influence of layered, spherical, and tubular carbon nanomaterials’ concentration on the flame retardancy of polypropylene. Polymer Composites, 36(7), 1230. http://dx.doi.org/10.1002/pc.23027.

11 Saravanan, N., Rajasekar, R., Mahalakshmi, S., Sathishkumar, T., Sasikumar, K., & Sahoo, S. (2014). Graphene and modified graphene-based polymer nanocomposites: a review. Journal of Reinforced Plastics and Composites, 33(12), 1158-1170. http://dx.doi.org/10.1177/0731684414524847.

12 Frasca, D., Schulze, D., Wachtendorf, V., Huth, C., & Schartel, B. (2015). Multifunctional multilayer graphene/elastomer nanocomposites. European Polymer Journal, 71, 99-113. http://dx.doi.org/10.1016/j.eurpolymj.2015.07.050.

13 Kang, H., Zuo, K., Wang, Z., Zhang, L., Liu, L., & Guo, B. (2014). Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance. Composites Science and Technology, 92, 1-8. http://dx.doi.org/10.1016/j.compscitech.2013.12.004.

14 Young, R. J., Kinloch, I. A., Gong, L., & Novoselov, K. S. (2012). The mechanics of graphene nanocomposites: a review. Composites Science and Technology, 72(12), 1459-1476. http://dx.doi.org/10.1016/j.compscitech.2012.05.005.

15 Galimberti, M., Coombs, M., Cipolletti, V., Riccio, P., Riccò, T., Pandini, S., & Conzatti, L. (2012). Enhancement of mechanical reinforcement due to hybrid filler networking promoted by an organoclay in hydrocarbon-based nanocomposites. Applied Clay Science, 65-66, 57-66. http://dx.doi.org/10.1016/j.clay.2012.04.019.

16 Conzatti, L., Stagnaro, P., Colucci, G., Bongiovanni, R., Priola, A., Lostritto, A., & Galimberti, M. (2012). The clay mineral modifier as the key to steer the properties of rubber nanocomposites. Applied Clay Science, 61, 14-21. http://dx.doi.org/10.1016/j.clay.2012.03.004.

17 Poikelispää, M., Das, A., Dierkes, W., & Vuorinen, J. (2013). The effect of partial replacement of carbon black by carbon nanotubes on the properties of natural rubber/butadiene rubber compound. Journal of Applied Polymer Science, 130(5), 3153. http://dx.doi.org/10.1002/app.39543.

18 Frasca, D., Schulze, D., Böhning, M., Krafft, B., & Schartel, B. (2016). Multilayer graphene chlorine isobutyl isoprene rubber nanocomposites: influence of the multilayer graphene concentration on physical and flame-retardant properties. Rubber Chemistry and Technology, 89(2), 316-334. http://dx.doi.org/10.5254/rct.15.84838.

19 Kumar, M. K. H., Shankar, S., Rajasekar, R., Kumar, P. S., & Kumar, P. S. (2017). Partial replacement of carbon black by nanoclay in butyl rubber compounds for tubeless tires. Materials Testing, 59(11-12), 1054-1060. http://dx.doi.org/10.3139/120.111109.

20 Wu, J., Huang, G., Qu, L., & Zheng, J. (2009). Correlations between dynamic fragility and dynamic mechanical properties of several amorphous polymers. Journal of Non-Crystalline Solids, 355(34-36), 1755-1759. http://dx.doi.org/10.1016/j.jnoncrysol.2009.06.013.

21 Jiang, P., Yang, C., He, X., Rodrigues, A. M., & Zhang, R. (2017). Viscoelastic changes in chlorinated butyl rubber modified with graphene oxide. Iranian Polymer Journal, 26(11), 861-870. http://dx.doi.org/10.1007/s13726-017-0570-9.

22 Liu, C., Fan, J., & Chen, Y. (2019). Design of regulable chlorobutyl rubber damping materials with high-damping value for a wide temperature range. Polymer Testing, 79, 106003. http://dx.doi.org/10.1016/j.polymertesting.2019.106003.

23 Wu, J., Xing, W., Huang, G., Li, H., Tang, M., Wu, S., & Liu, Y. (2013). Vulcanization kinetics of graphene/natural rubber nanocomposites. Polymer, 54(13), 3314-3323. http://dx.doi.org/10.1016/j.polymer.2013.04.044.

24 Potts, J. R., Shankar, O., Murali, S., Du, L., & Ruoff, R. S. (2013). Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Composites Science and Technology, 74, 166-172. http://dx.doi.org/10.1016/j.compscitech.2012.11.008.

25 Rajasekar, R., Pal, K., Heinrich, G., Das, A., & Das, C. (2009). Development of nitrile butadiene rubber–nanoclay composites with epoxidized natural rubber as compatibilizer. Materials & Design, 30(9), 3839-3845. http://dx.doi.org/10.1016/j.matdes.2009.03.014.

26 Jo, J. O., Saha, P., Kim, N. G., Ho, C. C., & Kim, J. K. (2015). Development of nanocomposite with epoxidized natural rubber and functionalized multiwalled carbon nanotubes for enhanced thermal conductivity and gas barrier property. Materials & Design, 83, 777-785. http://dx.doi.org/10.1016/j.matdes.2015.06.045.

27 Li, L., Zhang, J., Jo, J. O., Datta, S., & Kim, J. K. (2013). Effects of variation of oil and zinc oxide type on the gas barrier and mechanical properties of chlorobutyl rubber/epoxidised natural rubber blends. Materials & Design, 49, 922-928. http://dx.doi.org/10.1016/j.matdes.2013.02.057.

28 Azizli, M., Naderi, G., Bakhshandeh, G., Soltani, S., Askari, F., & Esmizadeh, E. (2014). Improvement in physical and mechanical properties of IIR/CR rubber blend organoclay nanocomposites. Rubber Chemistry and Technology, 87(1), 10-20. http://dx.doi.org/10.5254/rct.13.87951.

29 Rajasekar, R., Nayak, G., Malas, A., & Das, C. (2012). Development of compatibilized SBR and EPR nanocomposites containing dual filler system. Materials & Design, 35, 878-885. http://dx.doi.org/10.1016/j.matdes.2011.10.018.

30 Kumar, H. K. M., Subramaniam, S., Rathanasamy, R., Pal, S. K., & Palaniappan, S. K. (2020). Substantial reduction of carbon black and balancing the technical properties of styrene butadiene rubber compounds using nanoclay. Journal of Rubber Research, 23(2), 79-87. http://dx.doi.org/10.1007/s42464-020-00039-7.
 

6037b47fa953954e857e84c5 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections