Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Gamma radiation effect on sisal / polyurethane composites without coupling agents

Vasco, Marina Cardoso; Claro Neto, Salvador; Nascimento, Eduardo Mauro; Azevedo, Elaine

Downloads: 0
Views: 280


Natural fibers and polyurethane based composites may present chemical bonding between the components of the polymer and the lignin of the fiber. The incidence of radiation can cause degradation of the polymeric material and alter its mechanical properties. The objective of this study was to obtain and characterize cold pressed composites from polyurethane derived from castor oil and sisal fibers, without coupling agents, through thermogravimetric and mechanical tests, before and after the incidence of 25 kGy dose of gamma radiation. Woven composites that were not irradiated had maximum values of 4.40 GPa for flexural elastic modulus on three point flexural test and dispersed fiber composite that were not irradiated had maximum values of 2.25 GPa. These materials are adequate for use in non-structural applications in radiotherapy and radiodiagnostic rooms.


gamma radiation, sisal, polyurethane, mechanical properties, green composite.


1. Silva, R. V., Spinelli, D., Bose Filho, W. W., Claro, S., No., Chierice, G. O., & Tarpani, J. R. (2006). Fracture toughness of natural fibers/castor oil polyurethane composites. Composites Science and Technology, 66(10), 1328-1335. http://dx.doi.org/10.1016/j.compscitech.2005.10.012.

2. Beckwith, S. W. (2003). Natural fiber reinforcement materials: lower cost technology for composites applications. New York: Compos Fab.

3. Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 37(11), 1552-1596. http://dx.doi.org/10.1016/j.progpolymsci.2012.04.003.

4. Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: an overview. Macromolecular Materials and Engineering, 277(1), 1-24. http://dx.doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W.

5. Dittenber, D. B., & GangaRao, H. V. S. (2012). Critical review of recent publications on use of natural composites in infrastructure. Composites. Part A, Applied Science and Manufacturing, 43(8), 1419-1429. http://dx.doi.org/10.1016/j.compositesa.2011.11.019.

6. Callister, W. D. (2007). Materials science and engineering: an introduction. New York: John Wiley & Sons.

7. Varghese, S., Kuriakose, B., & Thomas, S. (1994). Short sisal fibre reinforced natural rubber composites: high-energy radiation, thermal and ozone degradation. Polymer Degradation & Stability, 44(1), 55-61. http://dx.doi.org/10.1016/0141-3910(94)90032-9.

8. Azevedo, E. C., Nascimento, E. M., Chierice, G. O., Claro, S., No., & Lepienski, C. M. (2013). UV and gamma irradiation effects on surface properties of polyurethane derivate from castor oil. Polímeros: Ciência e Tecnologia, 23, 305-311. http://dx.doi.org/10.4322/polimeros.2013.087.

9. Zini, E., & Scandola, M. (2011). Green composites: an overview. Polymer Composites, 32(12), 1905-1915. http://dx.doi.org/10.1002/pc.21224.

10. Bledzki, A. K., Reihmane, S., & Gassan, J. (1996). Properties and modification methods for vegetable fibers for natural fiber composites. Journal of Applied Polymer Science, 59(8), 1329-1336. http://dx.doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0.

11. Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Progress in Polymer Science, 24(2), 221-274. http://dx.doi.org/10.1016/S0079-6700(98)00018-5.

12. Arbelaiz, A., Fernandez, B., Ramos, J. A., & Mondragon, I. (2006). Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: effect of treatments. Thermochimica Acta, 440(2), 111-121. http://dx.doi.org/10.1016/j.tca.2005.10.016.

13. Belgacem, M. N., & Gandini, A. (2005). The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Composite Interfaces, 12(1-2), 41-75. http://dx.doi.org/10.1163/1568554053542188.

14. George, J., Sreekala, M. S., & Thomas, S. (2001). A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering and Science, 41(9), 1471-1485. http://dx.doi.org/10.1002/pen.10846.

15. Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites: a review. Polymer Engineering and Science, 49(7), 1253-1272. http://dx.doi.org/10.1002/pen.21328.

16. Maldas, D., Kokta, B. V., Raj, R. G., & Daneault, C. (1998). Improvement of the mechanical properties of sawdust wood fibre—polystyrene composites by chemical treatment. Polymer, 29(7), 1255-1265. http://dx.doi.org/10.1016/0032-3861(88)90053-5.

17. Baiardo, M., Frisoni, G., Scandola, M., & Licciardello, A. (2002). Surface chemical modification of natural cellulose fibers. Journal of Applied Polymer Science, 83(1), 38-45. http://dx.doi.org/10.1002/app.2229.

18. Baiardo, M., Zini, E., & Scandola, M. (2004). Flax fibre-polyester composites. Composites. Part A, Applied Science and Manufacturing, 35(6), 703-710. http://dx.doi.org/10.1016/j.compositesa.2004.02.004.

19. Frisoni, G., Baiardo, M., Scandola, M., Lednicka, D., Cnockaert, M. C., Mergaert, J., & Swings, J. (2001). Natural cellulose fibers: heterogeneous acetylation kinetics and biodegradation behavior. Biomacromolecules, 2(2), 476-482. PMid:11749209. http://dx.doi.org/10.1021/bm0056409.

20. Zini, E., Scandola, M., & Gatenholm, P. (2003). Heterogeneous acylation of flax fibers. reaction kinetics and surface properties. Biomacromolecules, 4(3), 821-827. PMid:12741804. http://dx.doi.org/10.1021/bm034040h.

21. Zini, E., Baiardo, M., Armelao, L., & Scandola, M. (2004). Biodegradable polyesters reinforced with surface-modified vegetable fibers. Macromolecular Bioscience, 4(3), 286-295. PMid:15468219. http://dx.doi.org/10.1002/mabi.200300120.

22. Zini, E., Focarete, M. L., Noda, I., & Scandola, M. (2007). Bio-composite of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) reinforced with vegetable fibers. Composites Science and Technology, 67(10), 2085-2094. http://dx.doi.org/10.1016/j.compscitech.2006.11.015.

23. Joseph, K., Thomas, S., & Pavithran, C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer, 37(23), 5139-5149. http://dx.doi.org/10.1016/0032-3861(96)00144-9.

24. Belgacem, N. M., Bataille, P., & Sapieha, S. (1994). Effect of corona modification on the mechanical properties of polypropylene/cellulose composites. Journal of Applied Polymer Science, 53(4), 379-385. http://dx.doi.org/10.1002/app.1994.070530401.

25. Li, Z. F., & Netravali, A. N. (1992). Surface modification of UHSPE fibers through allylamine plasma deposition. II. Effect on fiber and fiber/epoxy interface. Journal of Applied Polymer Science, 44(2), 333-346. http://dx.doi.org/10.1002/app.1992.070440217.

26. Wu, C. S. (2009). Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: characterization and biodegradability. Polymer Degradation & Stability, 94(7), 1076-1084. http://dx.doi.org/10.1016/j.polymdegradstab.2009.04.002.

27. Karnani, R., Krishnan, M., & Narayan, R. (1997). Biofiber-reinforced polypropylene composites. Polymer Engineering and Science, 37(2), 476-483. http://dx.doi.org/10.1002/pen.11691.

28. Vilar, W. (1999). Química e tecnologia dos poliuretanos. São Paulo: Pronor.

29. Huang, S. J., Edelman, P. G., Scott, G., & Gilead, D. (1995). Degradable polymers: principles and applications. London: Chapman & Hall.

30. Azevedo, E. C., Chierice, G. O., Claro, S., No., Soboll, D., Nascimento, E. M., & Lepienski, C. M. (2010). Gamma radiation effects on mechanical properties and morphology of a polyurethane derivate from castor oil. Radiation Effects and Defects in Solids, 166(3), 208-214. http://dx.doi.org/10.1080/10420150.2010.525235.

31. Carmona, V., Campos, A., Marconcini, J. M., & Mattoso, L. H. C. (2014). Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by non-isothermal procedures. Journal of Thermal Analysis and Calorimetry, 115(1), 153-160. http://dx.doi.org/10.1007/s10973-013-3259-0.

32. Suarez, J. C. M., Coutinho, F. M. B., & Sydenstricker, T. H. (2005). Analysis of the fracture behavior of polypropylene - sawdust composites. Polímeros: Ciência e Tecnologia, 15(2), 139-141. http://dx.doi.org/10.1590/S0104-14282005000200015.

33. Borsoi, C., Berwig, K. H., & Zoppas, L. (2014). Behavior in simulated soil of recycled expanded polystyrene/waste cotton composites. Materials Research, 17(1), 275-283. http://dx.doi.org/10.1590/S1516-14392013005000167.

34. Razera, I. A. T., Silva, C. G., Almeida, É. V. R., & Frollini, E. (2014). Treatments of jute fibers aiming at improvement of fiber-phenolic matrix adhesion macromolecular. Polímeros: Ciência e Tecnologia, 24(4), 417-421. http://dx.doi.org/10.1590/0104-1428.1738.

35. Cai, D., Yin, J., & Liu, R. (2015). Experimental and analytical investigation into the stress performance of composite anchors for CFRP tendons. Composites. Part B, Engineering, 79, 530-535. http://dx.doi.org/10.1016/j.compositesb.2015.05.014.

5b7b15b50e8825ed5a896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections