Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Water vapor permeation and morphology of polysulfone membranes prepared by phase inversion

Luis Guilherme Macedo Baldo; Marcelo Kaminski Lenzi; Daniel Eiras

Downloads: 0
Views: 254


The aim of this work was to study the effect of different variables in the morphology and water vapor permeation of asymmetric membranes. Different from other works on vapor induced phase inversion this work focus on the formation of a dense skin capable of separating small molecules like gases and on the transport properties of water vapor instead of liquid water. It also correlates the morphologies with the permeability. The results show that higher polymer concentrations lead to denser skin and lower permeability. Water vapor transmission rates varied from 30 to 48 g/m2.h depending on membrane morphology. They also show that for membranes with the same type of skin layer the permeability depends on the sub-layer. Finally, the results suggest that different mechanisms were responsible for the formation of the membranes.



asymmetric membranes, vapor induced phase inversion, water vapor permeation


1 Kárászová, M., Zach, B., Petrusová, Z., Červenka, V., Bobák, M., Šyc, M., & Izák, P. (2020). Post-combustion carbon capture by membrane separation, review. Separation and Purification Technology, 238, 116448-116456. http://dx.doi.org/10.1016/j.seppur.2019.116448.

2 Nunes, S. P., Culfaz-Emecen, P. Z., Ramon, G. Z., Visser, T., Koops, G. H., Jin, W., & Ulbricht, M. (2020). Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science, 598, 117761-117788. http://dx.doi.org/10.1016/j.memsci.2019.117761.

3 Li, Y., Cao, B., & Li, P. (2019). Effects of dope compositions on morphologies and separation performances of PMDA-ODA polyimide hollow fiber membranes in aqueous and organic solvent systems. Applied Surface Science, 473, 1038-1048. http://dx.doi.org/10.1016/j.apsusc.2018.12.245.

4 Kausar, A. (2017). Phase inversion technique-based polyamide films and their applications: a comprehensive review. Polymer-Plastics Technology and Engineering, 56(13), 1421-1437. http://dx.doi.org/10.1080/03602559.2016.1276593.

5 Hołda, A. K., & Vankelecom, I. F. J. (2015). Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. Journal of Applied Polymer Science, 132(27), 1-17. http://dx.doi.org/10.1002/app.42130.

6 Ismail, N., Venault, A., Mikkola, J. P., Bouyer, D., Drioli, E., & Tavajohi Hassan Kiadeh, N. (2020). Investigating the potential of membranes formed by the vapor induced phase separation process. Journal of Membrane Science, 597, 117601-117636. http://dx.doi.org/10.1016/j.memsci.2019.117601.

7 Ismail, A. F., & Lai, P. Y. (2003). Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation. Separation and Purification Technology, 33(2), 127-143. http://dx.doi.org/10.1016/S1383-5866(02)00201-0.

8 Guillen, G. R., Pan, Y., Li, M., & Hoek, E. M. V. (2011). Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Industrial & Engineering Chemistry Research, 50(7), 3798-3817. http://dx.doi.org/10.1021/ie101928r.

9 Xiang, J., Hua, X., Dong, X., Cheng, P., Zhang, L., Du, W., & Tang, N. (2019). Effect of nonsolvent additives on PES ultrafiltration membrane pore structure. Journal of Applied Polymer Science, 136(15), 1-8. http://dx.doi.org/10.1002/app.47525.

10 Smolders, C. A., Reuvers, A. J., Boom, R. M., & Wienk, I. M. (1992). Microstructures in phaseinversionmembranes. 1. Formation of macrovoids. Journal of Membrane Science, 73(2-3), 259-275. http://dx.doi.org/10.1016/0376-7388(92)80134-6.

11 Hung, W. L., Wang, D. M., Lai, J. Y., & Chou, S. C. (2016). On the initiation of macrovoids in polymeric membranes: effect of polymer chain entanglement. Journal of Membrane Science, 505, 70-81. http://dx.doi.org/10.1016/j.memsci.2016.01.021.

12 Mousavi, S. M., & Zadhoush, A. (2017). Investigation of the relation between viscoelastic properties of polysulfone solutions, phase inversion process and membrane morphology: the effect of solvent power. Journal of Membrane Science, 532, 47-57. http://dx.doi.org/10.1016/j.memsci.2017.03.006.

13 Tsai, J. T., Su, Y. S., Wang, D. M., Kuo, J. L., Lai, J. Y., & Deratani, A. (2010). Retainment of pore connectivity in membranes prepared with vapor-induced phase separation. Journal of Membrane Science, 362(1-2), 360-373. http://dx.doi.org/10.1016/j.memsci.2010.06.039.

14 Peng, Y., Dong, Y., Fan, H., Chen, P., Li, Z., & Jiang, Q. (2013). Preparation of polysulfone membranes via vapor-induced phase separation and simulation of direct-contact membrane distillation by measuring hydrophobic layer thickness. Desalination, 316, 53-66. http://dx.doi.org/10.1016/j.desal.2013.01.021.

15 Su, Y. S., Kuo, C. Y., Wang, D. M., Lai, J. Y., Deratani, A., Pochat, C., & Bouyer, D. (2009). Interplay of mass transfer, phase separation, and membrane morphology in vapor-induced phase separation. Journal of Membrane Science, 338(1-2), 17-28. http://dx.doi.org/10.1016/j.memsci.2009.03.050.

16 Chae Park, H., Po Kim, Y., Yong Kim, H., & Soo Kang, Y. (1999). Membrane formation by water vapor induced phase inversion. Journal of Membrane Science, 156(2), 169-178. http://dx.doi.org/10.1016/S0376-7388(98)00359-7.

17 Tsai, H. A., Kuo, C. Y., Lin, J. H., Wang, D. M., Deratani, A., Pochat-Bohatier, C., Lee, K. R., & Lai, J. Y. (2006). Morphology control of polysulfone hollow fiber membranes via water vapor induced phase separation. Journal of Membrane Science, 278(1-2), 390-400. http://dx.doi.org/10.1016/j.memsci.2005.11.029.

18 Tsai, H. A., Lin, J. H., Wang, D. M., Lee, K. R., & Lai, J. Y. (2006). Effect of vapor-induced phase separation on the morphology and separation performance of polysulfone hollow fiber membranes. Desalination, 200(1-3), 247-249. http://dx.doi.org/10.1016/j.desal.2006.03.313.

19 Lee, H. J., Jung, B., Kang, Y. S., & Lee, H. (2004). Phase separation of polymer casting solution by nonsolvent vapor. Journal of Membrane Science, 245(1-2), 103-112. http://dx.doi.org/10.1016/j.memsci.2004.08.006.

20 Dai, Y., Li, Q., Ruan, X., Hou, Y., Jiang, X., Yan, X., He, G., Meng, F., & Wang, Z. (2019). Fabrication of defect-free matrimid® asymmetric membranes and the elevated temperature application for N2/SF6 separation. Journal of Membrane Science, 577, 258-265. http://dx.doi.org/10.1016/j.memsci.2019.01.050.

21 American Society for Testing and Materials – ASTM. (2000). ASTM E96-00: standard test methods for water vapor transmission of materials (pp. 907-914). West Conshohocken: ASTM. http://dx.doi.org/10.1520/E0096-00.

22 Sadrzadeh, M., & Bhattacharjee, S. (2013). Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives. Journal of Membrane Science, 441, 31-44. http://dx.doi.org/10.1016/j.memsci.2013.04.009.

6037b048a9539549a1158fd3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections