Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.05818
Polímeros: Ciência e Tecnologia
Original Article

Effects of miniemulsion operation conditions on the immobilization of BSA onto PMMA nanoparticles

Campos, Izabella; Paiva, Thamiris; Ferraz, Helen; Pinto, José Carlos

Downloads: 0
Views: 129

Abstract

Polymer nanoparticles have been widely used in many biomedical applications, constituting a major incentive for immobilization of proteins. Poly(methyl methacrylate) nanoparticles were synthesized through miniemulsion polymerizations and used as supports for bovine serum albumin immobilization. Particularly, the effects of surfactant type (anionic sodium dodecyl sulfate and cationic cetyl trimethyl ammonium bromide) surfactant concentration and monomer holdup on some of the final nanoparticle properties (particle sizes, zeta potential and protein load) were characterized with help of statistical experimental designs for the first time. Results showed that the characteristics of the surfactant controlled the BSA adsorption efficiency, with enhanced rates of adsorption on the anionic particle surfaces, showing that the surfactant exerts fundamental effect on functionalization of emulsified polymer particles, which must be explicitly acknowledged in studies of polymer particle functionalization with proteins. Finally, BSA adsorption was shown to follow a multilayer process, given the better fitting with the Freundlich model.

Keywords

methyl methacrylate; miniemulsion polymerization; surfactant; protein adsorption; statistical experimental design.

References

1 Hans, M. L., & Lowman, A. M. (2002). Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science6(4), 319-327. http://dx.doi.org/10.1016/S1359-0286(02)00117-1.

2 El-Say, K. M., & El-Sawy, H. S. (2017). Polymeric nanoparticles: promising platform for drug delivery. International Journal of Pharmaceutics528(1–2), 675-691. http://dx.doi.org/10.1016/j.ijpharm.2017.06.052. PMid:28629982. 

3 Reis, C. P., Neufeld, R. J., Ribeiro, A. J., & Veiga, F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine; Nanotechnology, Biology, and Medicine2(1), 8-21. http://dx.doi.org/10.1016/j.nano.2005.12.003. PMid:17292111. 

4 Nagavarma, B. V. N., Yadav, H. K. S., Ayaz, A., Vasudha, L. S., & Shivakumar, H. G. (2012). Different techniques for preparation of polymeric nanoparticles- A review. Asian Journal of Pharmaceutical and Clinical Research5(3), 16-23. 

5 Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: preparation techniques and size-control parameters. Progress in Polymer Science (Oxford)36(7), 887-913. http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001

6 Elsabahy, M., & Wooley, K. L. (2012). Design of polymeric nanoparticles for biomedical delivery applications. Chemical Society Reviews41(7), 2545-2561. http://dx.doi.org/10.1039/c2cs15327k. PMid:22334259. 

7 Zhenqian, Z., Sihler, S., & Ziener, U. (2017). Alizarin Yellow R (AYR) as compatible stabilizer for miniemulsion polymerization. Journal of Colloid and Interface Science507(1), 337-343. http://dx.doi.org/10.1016/j.jcis.2017.08.007. PMid:28803027. 

8 Wachsmann, P., Moulari, B., Béduneau, A., Pellequer, Y., & Lamprecht, A. (2013). Surfactant-dependence of nanoparticle treatment in murine experimental colitis. Journal of Controlled Release172(1), 62-68. http://dx.doi.org/10.1016/j.jconrel.2013.07.031. PMid:23933520. 

9 Lorca, B. S. S., Bessa, E. S., Nele, M., Santos, E. P., & Pinto, J. C. (2012). Preparation of PMMA nanoparticles loaded with benzophenone-3 through miniemulsion polymerization. Macromolecular Symposia319(1), 246-250. http://dx.doi.org/10.1002/masy.201100252

10 Fonseca, L. B., Nele, M., Volpato, N. M., Seiceira, R. C., & Pinto, J. C. (2013). Production of PMMA nanoparticles loaded with praziquantel through “in situ” miniemulsion polymerization. Macromolecular Reaction Engineering7(1), 54-63. http://dx.doi.org/10.1002/mren.201200036

11 Moreira, T. S., Oliveira, M. A. M., Lima, L. M. T. R., Souza, M. N., & Pinto, J. C. C. S. (2014). Synthesis of nanoparticles loaded with tamoxifen by in situ miniemulsion RAFT polymerization. Macromolecular Symposia344(1), 101-107. http://dx.doi.org/10.1002/masy.201400025.

12 Schork, F. J., Luo, Y., Smulders, W., Russum, J. P., Butté, A., & Fontenot, K. (2005). Miniemulsion polymerization. In M. Okubo (Ed.), Polymer particles (pp. 129-255). Berlin: Springer. http://dx.doi.org/10.1007/b100115

13 Johnsson, B., Löfås, S., & Lindquist, G. (1991). Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Analytical Biochemistry198(2), 268-277. http://dx.doi.org/10.1016/0003-2697(91)90424-R. PMid:1724720. 

14 Carlson, R. (1992). Two-level factorial designs. In R. Carlson (Ed.), Design and optimization in organic synthesis (pp. 89-122). New York: Elsevier Science 

15 Yasuda, M., & Ono, K. (2015). BSA adsorption and immobilization onto charged monodisperse polymer nanoparticles. Journal of Biosensors & Bioelectronics6(4), 4-11. http://dx.doi.org/10.4172/2155-6210.1000183

16 Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry72(1-2), 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3. PMid:942051. 

17 Vauthier, C., Schmidt, C., & Couvreur, P. (1999). Measurement of the density of polymeric nanoparticulate drug carriers by isopycnic centrifugation. Journal of Nanoparticle Research1(3), 411-418. http://dx.doi.org/10.1023/A:1010031605547

18 Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society40(9), 1361-1403. http://dx.doi.org/10.1021/ja02242a004

19 Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry57(1), 385-471. 

20 Yoon, J.-Y., Park, H.-Y., Kim, J.-H., & Kim, W.-S. (1996). Adsorption of BSA on highly carboxylated microspheres: quantitative effects of surface functional groups and interaction forces. Journal of Colloid and Interface Science177(2), 613-620. http://dx.doi.org/10.1006/jcis.1996.0075

21 Chen, S., Billings, S. A., & Luo, W. (1989). Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control50(5), 1873-1896. http://dx.doi.org/10.1080/00207178908953472

22 Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal7(4), 308-313. http://dx.doi.org/10.1093/comjnl/7.4.308

23 Patil, S., Sandberg, A., Heckert, E., Self, W., & Seal, S. (2007). Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials28(31), 4600-4607. http://dx.doi.org/10.1016/j.biomaterials.2007.07.029. PMid:17675227. 

24 Hecht, L. L., Wagner, C., Landfester, K., & Schuchmann, H. P. (2011). Surfactant concentration regime in miniemulsion polymerization for the formation of MMA nanodroplets by high-pressure homogenization. Langmuir27(6), 2279-2285. http://dx.doi.org/10.1021/la104480s. PMid:21314152. 

25 Peixoto, A. C. B., Campos, I. M. F., Ferraz, H. C., & Pinto, J. C. (2016). Use of Hydrophilic Monomers to Avoid Secondary Particle Nucleation in Miniemulsion Polymerizations of Methyl Methacrylate. Journal of Research Updates in Polymer Science5(2), 60-71. http://dx.doi.org/10.6000/1929-5995.2016.05.02.2

26 Fontenot, K., & Schork, F. J. (1993). Batch polymerization of methyl methacrylate in mini/macroemulsions. Journal of Applied Polymer Science49(4), 633-655. http://dx.doi.org/10.1002/app.1993.070490410

27 Asua, J. M. (2002). Miniemulsion polymerization. Progress in Polymer Science27(7), 1283-1346. http://dx.doi.org/10.1016/S0079-6700(02)00010-2

28 Antonietti, M., & Landfester, K. (2002). Polyreactions in miniemulsions. Progress in Polymer Science (Oxford)27(4), 689-757. http://dx.doi.org/10.1016/S0079-6700(01)00051-X

29 Pichot, R., Spyropoulos, F., & Norton, I. T. (2010). O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: the effect of surfactant type and concentration. Journal of Colloid and Interface Science352(1), 128-135. http://dx.doi.org/10.1016/j.jcis.2010.08.021. PMid:20817195. 

30 Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids25(5), 1000-1008. http://dx.doi.org/10.1016/j.foodhyd.2010.09.017

31 Visaveliya, N., & Köhler, J. M. (2014). Control of shape and size of polymer nanoparticles aggregates in a single-step microcontinuous flow process: a case of flower and spherical shapes. Langmuir30(41), 12180-12189. http://dx.doi.org/10.1021/la502896s. PMid:25251615. 

32 Yoon, J. Y., Lee, J. H., Kim, J. H., & Kim, W. S. (1998). Separation of serum proteins with uncoupled microsphere particles in a stirred cell. Colloids and Surfaces. B, Biointerfaces10(6), 365-377. http://dx.doi.org/10.1016/S0927-7765(97)00068-4

33 Gelamo, E. L., Silva, C. H. T. P., Imasato, H., & Tabak, M. (2002). Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling. Biochimica et Biophysica Acta1594(1), 84-99. http://dx.doi.org/10.1016/S0167-4838(01)00287-4. PMid:11825611. 

34 Nandhakumar, S., Dhanaraju, M. D., Sundar, V. D., & Heera, B. (2017). Influence of surface charge on the in vitro protein adsorption and cell cytotoxicity of paclitaxel loaded poly(ε-caprolactone) nanoparticles. Bulletin of Faculty of Pharmacy, Cairo University55(2), 249-258. http://dx.doi.org/10.1016/j.bfopcu.2017.06.003.

35 Rabe, M., Verdes, D., & Seeger, S. (2011). Understanding protein adsorption phenomena at solid surfaces. Advances in Colloid and Interface Science162(1–2), 87-106. http://dx.doi.org/10.1016/j.cis.2010.12.007. PMid:21295764.

36 Sun, C. J., Sun, L. Z., & Sun, X. X. (2013). Graphical evaluation of the favorability of adsorption processes by using conditional langmuir constant. Industrial & Engineering Chemistry Research52(39), 14251-14260. http://dx.doi.org/10.1021/ie401571p

37 Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal156(1), 2-10. http://dx.doi.org/10.1016/j.cej.2009.09.013

38 Dominguez-Medina, S., Blankenburg, J., Olson, J., Landes, C. F., & Link, S. (2013). Adsorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions. ACS Sustainable Chemistry & Engineering1(7), 833-842. http://dx.doi.org/10.1021/sc400042h. PMid:23914342. 

5e8e14b00e8825766e1ad513 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections