Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.05720
Polímeros: Ciência e Tecnologia
Review Article

Evaluation of fracture toughness of epoxy polymer composite incorporating micro/nano silica, rubber and CNTs

Ronaldo Câmara Cozza; Vikas Verma

Downloads: 1
Views: 102

Abstract

In engineering applications, fracture toughness is an essential requirement that determines the life of a material. Epoxy polymers are widely used in fibre-reinforced composite materials. Due to their structural efficiency and durability, the use of adhesive and composite materials based on epoxy polymers is widespread in aerospace and automobile industries. In this paper fracture toughness of hybrid epoxy polymer composite with addition of nano/micro figures of silica, rubber and carbon nano tubes (CNTs) is evaluated. It is observed that silica addition promoted nano toughening effect with plastically deformation capability in epoxies. Rubber and multi walled CNTs increased the toughness with negligible reduction in stiffness in epoxies. Future research emphasis can be laid on crucial understanding of stress transfer mechanisms and interfacial bond strength between nano particles – epoxy system and on nanofillers modified epoxies as matrices or interleafs for carbon or glass fiber composites to increase the interlaminar delamination toughness.

Keywords

CNT, epoxy, rubber, silica

References

1 Hsieh, T. H., Kinloch, A. J., Masania, K., Taylor, A. C., & Sprenger, S. (2010). The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer, 51(26), 6284-6294. http://dx.doi.org/10.1016/j.polymer.2010.10.048.

2 Bray, D. J., Dittanet, P., Guild, F. J., Kinloch, A. J., Masania, K., Pearson, R. A., & Taylor, A. C. (2013). The modelling of the toughening of epoxy polymers via silica nanoparticles: the effects of volume fraction and particle size. Polymer, 54(26), 7022-7032. http://dx.doi.org/10.1016/j.polymer.2013.10.034.

3 Domun, N., Hadavinia, H., Zhang, T., Sainsbury, T., Liaghat, G. H., & Vahid, S. (2015). Improving the fracture toughness and the strength of epoxy using nanomaterials: a review of the current status. Nanoscale, 7(23), 10294-10329. http://dx.doi.org/10.1039/C5NR01354B. PMid:26006766.

4 Gouda, P. S. S., Kodancha, K. G., Siddaramaiah & Jawali, D. (2013). Experimental and numerical investigations on fracture behavior of high silica glass/satin textile fiber reinforced hybrid polymer composites. Advanced Materials Letters, 4(11), 827-835. http://dx.doi.org/10.5185/amlett.2013.3450.

5 Day, R. J., Lovell, P. A., & Wazzan, A. A. (2001). Toughened carbon/epoxy composites made by using core/shell particles. Composites Science and Technology, 61(1), 41-56. http://dx.doi.org/10.1016/S0266-3538(00)00169-X.

6 Zaroog, O. S., Zein, M. A. M., & Manap, A. N. A. (2012). Fracture toughness of composite materials. International Journal of Scientific Research, 3(8), 1759-1766.

7 Marouf, B. T., Mai, Y.-W., Bagheri, R., & Pearson, R. A. (2016). Toughening of epoxy nanocomposites: nano and hybrid effects. Polymer Reviews, 56(1), 70-112. http://dx.doi.org/10.1080/15583724.2015.1086368.

8 Dittanet, P., & Pearson, R. A. (2012). Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer, 53(9), 1890-1905. http://dx.doi.org/10.1016/j.polymer.2012.02.052.

9 Dittanet, P., & Pearson, R. A. (2013). Effect of bimodal particle size distributions on the toughening mechanisms in silica nanoparticle filled epoxy resin. Polymer, 54(7), 1832-1845. http://dx.doi.org/10.1016/j.polymer.2012.12.059.

10 Johnsen, B. B., Kinloch, A. J., Mohammed, R. D., Taylor, A. C., & Sprenger, S. (2007). Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer, 48(2), 530-541. http://dx.doi.org/10.1016/j.polymer.2006.11.038.

11 Blackman, B. R. K., Kinloch, A. J., Sohn Lee, J., Taylor, A. C., Agarwal, R., Schueneman, G., & Sprenger, S. (2007). The fracture and fatigue behaviour of nano-modified epoxy polymers. Journal of Materials Science, 42(16), 7049-7051. http://dx.doi.org/10.1007/s10853-007-1768-6.

12 Adachi, T., Osaki, M., Araki, W., & Kwon, S.-C. (2008). Fracture toughness of nano- and micro-spherical silica-particle-filled epoxy composites. Acta Materialia, 56(9), 2101-2109. http://dx.doi.org/10.1016/j.actamat.2008.01.002.

13 Kwon, S.-C., & Adachi, T. (2007). Strength and fracture toughness of nano and micron-silica particles bidispersed epoxy composites: evaluated by fragility parameter. Journal of Materials Science, 42(14), 5516-5523. http://dx.doi.org/10.1007/s10853-006-1025-4.

14 Adachi, T., Araki, W., Nakahara, T., Yamaji, A., & Gamou, M. (2002). Fracture toughness of silica particulate-filled epoxy composite. Journal of Applied Polymer Science, 86(9), 2261-2265. http://dx.doi.org/10.1002/app.11206.

15 Roulin-Moloney, A. C., Cantwell, W. J., & Kausch, H. H. (1987). Parameters determining the strength and toughness of particulate-filled epoxy resins. Polymer Composites, 8(5), 314-323. http://dx.doi.org/10.1002/pc.750080506.

16 Beaumont, P. W. R., & Young, R. J. (1975). Failure of brittle polymers by slow crack growth. Journal of Materials Science, 10(8), 1334-1342. http://dx.doi.org/10.1007/BF00540823.

17 Nakamura, Y., Yamaguchi, M., Okubo, M., & Matsumoto, T. (1992). Effect of particle size on the fracture toughness of epoxy resin filled with spherical silica. Polymer, 33(16), 3415-3426. http://dx.doi.org/10.1016/0032-3861(92)91099-N.

18 Nakamura, Y., Okabe, S., & Iida, T. (1999). Effects of particle shape, size and interfacial adhesion on the fracture strength of silica-filled epoxy resin. Polymers & Polymer Composites, 7, 177-186.

19 Cantwell, W. J., Roulin-Moloney, A. C., & Kaiser, T. (1988). Fractography of unfilled and particulate-filled epoxy resins. Journal of Materials Science, 23(5), 1615-1631. http://dx.doi.org/10.1007/BF01115700.

20 Moloney, A. C., Kausch, H. H., & Stieger, H. R. (1983). The fracture of particulate-filled epoxide resins. Journal of Materials Science, 18(1), 208-216. http://dx.doi.org/10.1007/BF00543827.

21 Chen, C., Justice, R. S., Schaefer, D. W., & Baur, J. W. (2008). Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties. Polymer, 49(17), 3805-3815. http://dx.doi.org/10.1016/j.polymer.2008.06.023.

22 Liang, Y. L., & Pearson, R. A. (2009). Toughening mechanisms in epoxy–silica nanocomposites (ESNs). Polymer, 50(20), 4895-4905. http://dx.doi.org/10.1016/j.polymer.2009.08.014.

23 Ma, J., Mo, M.-S., Du, X.-S., Rosso, P., Friedrich, K., & Kuan, H.-C. (2008). Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems. Polymer, 49(16), 3510-3523. http://dx.doi.org/10.1016/j.polymer.2008.05.043.

24 Zhang, H., Tang, L.-C., Zhang, Z., Friedrich, K., & Sprenger, S. (2008). Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures. Polymer, 49(17), 3816-3825. http://dx.doi.org/10.1016/j.polymer.2008.06.040.

25 Rosso, P., Ye, L., Friedrich, K., & Sprenger, S. (2006). A toughened epoxy resin by silica nanoparticle reinforcement. Journal of Applied Polymer Science, 100(3), 1849-1855. http://dx.doi.org/10.1002/app.22805.

26 Zhang, H., Zhang, Z., Friedrich, K., & Eger, C. (2006). Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Materialia, 54(7), 1833-1842. http://dx.doi.org/10.1016/j.actamat.2005.12.009.

27 Ragosta, G., Abbate, M., Musto, P., Scarinzi, G., & Mascia, L. (2005). Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer, 46(23), 10506-10516. http://dx.doi.org/10.1016/j.polymer.2005.08.028.

28 Karger-Kocsis, J., Gryshchuk, O., Fröhlich, J., & Mülhaupt, R. (2003). Interpenetrating vinylester/epoxy resins modified with organophilic layered silicates. Composites Science and Technology, 63(14), 2045-2054. http://dx.doi.org/10.1016/S0266-3538(03)00110-6.

29 Fu, S.-Y., Feng, X.-Q., Lauke, B., & Mai, Y.-W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites. Part B, Engineering, 39(6), 933-961. http://dx.doi.org/10.1016/j.compositesb.2008.01.002.

30 Guo, Y., & Li, Y. (2007). Quasi-static/dynamic response of SiO2-epoxy nanocomposites. Materials Science and Engineering A, 458(1-2), 330-335. http://dx.doi.org/10.1016/j.msea.2007.02.011.

31 Chikhi, N., Fellahi, S., & Bakar, M. (2002). Modification of epoxy resin using reactive liquid (ATBN) rubber. European Polymer Journal, 38(2), 251-264. http://dx.doi.org/10.1016/S0014-3057(01)00194-X.

32 Zhao, Y., Chen, Z.-K., Liu, Y., Xiao, H.-M., Feng, Q.-P., & Fu, S.-Y. (2013). Simultaneously enhanced cryogenic tensile strength and fracture toughness of epoxy resins by carboxylic nitrile-butadiene nano-rubber. Composites. Part A, Applied Science and Manufacturing, 55, 178-187. http://dx.doi.org/10.1016/j.compositesa.2013.09.005.

33 Chen, J., & Taylor, A. C. (2012). Epoxy modified with triblock copolymers: morphology, mechanical properties and fracture mechanisms. Journal of Materials Science, 47(11), 4546-4560. http://dx.doi.org/10.1007/s10853-012-6313-6.

34 Tang, L.-C., Zhang, H., Sprenger, S., Ye, L., & Zhang, Z. (2012). Fracture mechanisms of epoxy-based ternary composites filled with rigid-soft particles. Composites Science and Technology, 72(5), 558-565. http://dx.doi.org/10.1016/j.compscitech.2011.12.015.

35 Jiang, T., Kuila, T., Kim, N. H., Ku, B.-C., & Lee, J. H. (2013). Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Composites Science and Technology, 79, 115-125. http://dx.doi.org/10.1016/j.compscitech.2013.02.018.

36 Yang, G., Zheng, B., Yang, J.-P., Xu, G.-S., & Fu, S.-Y. (2008). Preparation and cryogenic mechanical properties of epoxy resins modified by poly(ethersulfone). Journal of Polymer Science. Part A, Polymer Chemistry, 46(2), 612-624. http://dx.doi.org/10.1002/pola.22409.

37 Chen, Z.-K., Yang, J.-P., Ni, Q.-Q., Fu, S.-Y., & Huang, Y.-G. (2009). Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties. Polymer, 50(19), 4753-4759. http://dx.doi.org/10.1016/j.polymer.2009.08.001.

38 Nishijima, S., Honda, Y., Tagawa, S., & Okada, T. (1996). Study of epoxy resin for cryogenic use by positron annihilation method. Journal of Radioanalytical and Nuclear Chemistry, 211(1), 93-101. http://dx.doi.org/10.1007/BF02036260.

39 Yang, J.-P., Yang, G., Xu, G., & Fu, S.-Y. (2007). Cryogenic mechanical behaviors of MMT/epoxy nanocomposites. Composites Science and Technology, 67(14), 2934-2940. http://dx.doi.org/10.1016/j.compscitech.2007.05.012.

40 Yang, G., Fu, S.-Y., & Yang, J.-P. (2007). Preparation and mechanical properties of modified epoxy resins with flexible diamines. Polymer, 48(1), 302-310. http://dx.doi.org/10.1016/j.polymer.2006.11.031.

41 Yahyaie, H., Ebrahimi, M., Tahami, H. V., & Mafi, E. R. (2013). Toughening mechanisms of rubber modified thin film epoxy resins. Progress in Organic Coatings, 76(1), 286-292. http://dx.doi.org/10.1016/j.porgcoat.2012.09.016.

42 Arias, M. L., Frontini, P. M., & Williams, R. J. (2003). Analysis of the damage zone around the crack tip for two rubber-modified epoxy matrices exhibiting different toughenability. Polymer, 44(5), 1537-1546. http://dx.doi.org/10.1016/S0032-3861(02)00829-7.

43 Tripathi, G., & Srivastava, D. (2007). Effect of carboxyl-terminated poly(butadiene-co-acrylonitrile) (CTBN) concentration on thermal and mechanical properties of binary blends of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin. Materials Science and Engineering A, 443(1-2), 262-269. http://dx.doi.org/10.1016/j.msea.2006.09.031.

44 Huang, F., Liu, Y., Zhang, X., Wei, G., Gao, J., Song, Z., Zhang, M., & Qiao, J. (2002). Effect of elastomeric nanoparticles on toughness and heat resistance of epoxy resins. Macromolecular Rapid Communications, 23(13), 786-790. http://dx.doi.org/10.1002/1521-3927(20020901)23:13<786::AID-MARC786>3.0.CO;2-T.

45 Pearson, R. A., & Yee, A. F. (1989). Toughening mechanisms in elastomer-modified epoxies. Journal of Materials Science, 24(7), 2571-2580. http://dx.doi.org/10.1007/BF01174528.

46 Dadfar, M. R., & Ghadami, F. (2013). Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites. Materials & Design, 47, 16-20. http://dx.doi.org/10.1016/j.matdes.2012.12.035.

47 Hwang, J.-F., Manson, J. A., Hertzberg, R. W., Miller, G. A., & Sperling, L. H. (1989). Structure-property relationships in rubber-toughened epoxies. Polymer Engineering and Science, 29(20), 1466-1476. http://dx.doi.org/10.1002/pen.760292008.

48 Verchere, D., Sautereau, H., Pascault, J. P., Moschiar, S. M., Riccardi, C. C., & Williams, R. J. J. (1990). Rubber-modified epoxies. I. Influence of carboxyl-terminated butadiene-acrylonitrile random copolymers (CTBN) on the polymerization and phase separation processes. Journal of Applied Polymer Science, 41(34), 467-485. http://dx.doi.org/10.1002/app.1990.070410303.

49 Verchere, D., Pascault, J. P., Sautereau, H., Moschiar, S. M., Riccardi, C. C., & Williams, R. J. J. (1991). Rubber-Modified epoxies. IV. Influence of morphology on mechanical properties. Journal of Applied Polymer Science, 43(2), 293-304. http://dx.doi.org/10.1002/app.1991.070430208.

50 Tripathy, R., Ojha, U., & Faust, R. (2011). Polyisobutylene modified bisphenol a diglycidyl ether based epoxy resins possessing improved mechanical properties. Macromolecules, 44(17), 6800-6809. http://dx.doi.org/10.1021/ma201081y.

51 Thomas, R., Yumei, D., Yuelong, H., Le, Y., Moldenaers, P., Weimin, Y., Czigany, T., & Thomas, S. (2008). Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer, 49(1), 278-294. http://dx.doi.org/10.1016/j.polymer.2007.11.030.

52 Marouf, B. T. (2009). Effect of microstructure factors on fracture behavior of clay-rubber-epoxy hybrid nanocomposites (Doctoral thesis). Sharif University of Technology, Persian.

53 Ayatollahi, M. R., Shadlou, S., & Shokrieh, M. M. (2011). Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions. Materials & Design, 32(4), 2115-2124. http://dx.doi.org/10.1016/j.matdes.2010.11.034.

54 Hsieh, T. H., Kinloch, A. J., Taylor, A. C., & Kinloch, I. A. (2011). The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. Journal of Materials Science, 46(23), 7525-7535. http://dx.doi.org/10.1007/s10853-011-5724-0.

55 Gkikas, G., Barkoula, N.-M., & Paipetis, A. S. (2012). Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Composites. Part B, Engineering, 43(6), 2697-2705. http://dx.doi.org/10.1016/j.compositesb.2012.01.070.

56 Yu, N., Zhang, Z. H., & He, S. Y. (2008). Fracture toughness and fatigue life of MWCNT/epoxy composites. Materials Science and Engineering A, 494(1-2), 380-384. http://dx.doi.org/10.1016/j.msea.2008.04.051.

57 Gómez-del Río, T., Rodríguez, J., & Pearson, R. A. (2014). Compressive properties of nanoparticle modified epoxy resin at different strain rates. Composites. Part B, Engineering, 57, 173-179. http://dx.doi.org/10.1016/j.compositesb.2013.10.002.

58 Fereidoon, A., Rajabpour, M., & Hemmatian, H. (2013). Fracture analysis of epoxy/SWCNT nanocomposite based on global-local finite element model. Composites. Part B, Engineering, 54, 400-408. http://dx.doi.org/10.1016/j.compositesb.2013.05.020.

59 Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. (2010). Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 35(3), 357-401. http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003.

60 Byrne, M. T., & Gun’ko, Y. K. (2010). Recent advances in research on carbon nanotube-polymer composites. Advanced Materials, 22(15), 1672-1688. http://dx.doi.org/10.1002/adma.200901545. PMid:20496401.

61 Chou, T.-W., Gao, L., Thostenson, E. T., Zhang, Z., & Byun, J.-H. (2010). An assessment of the science and technology of carbon nanotube-based fibers and composites. Composites Science and Technology, 70(1), 1-19. http://dx.doi.org/10.1016/j.compscitech.2009.10.004.

62 Wichmann, M. H. G., Schulte, K., & Wagner, H. D. (2008). On nanocomposite toughness. Composites Science and Technology, 68(1), 329-331. http://dx.doi.org/10.1016/j.compscitech.2007.06.027.

63 Guzmán de Villoria, R., & Miravete, A. (2007). Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Materialia, 55(9), 3025-3031. http://dx.doi.org/10.1016/j.actamat.2007.01.007.

64 Lau, K., Gu, C., & Hui, D. (2006). A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Composites. Part B, Engineering, 37(6), 425-436. http://dx.doi.org/10.1016/j.compositesb.2006.02.020.

65 Moniruzzaman, M., & Winey, K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules, 39(16), 5194-5205. http://dx.doi.org/10.1021/ma060733p.

66 Gojny, F. H., Wichmann, M. H. G., Fiedler, B., Bauhofer, W., & Schulte, K. (2005). Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites. Part A, Applied Science and Manufacturing, 36(11), 1525-1535. http://dx.doi.org/10.1016/j.compositesa.2005.02.007.

67 Xie, X., Mai, Y., & Zhou, X. (2005). Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Materials Science and Engineering R Reports, 49(4), 89-112. http://dx.doi.org/10.1016/j.mser.2005.04.002.

68 Guo, P., Chen, X., Gao, X., Song, H., & Shen, H. (2007). Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Composites Science and Technology, 67(15-16), 3331-3337. http://dx.doi.org/10.1016/j.compscitech.2007.03.026.

69 Park, S.-J., Jeong, H.-J., & Nah, C. (2004). A study of oxyfluorination of multi-walled carbon nanotubes on mechanical interfacial properties of epoxy matrix nanocomposites. Materials Science and Engineering A, 385(1-2), 13-16. http://dx.doi.org/10.1016/j.msea.2004.03.041.

70 Li, S., Wang, F., Wang, Y., Wang, J., Ma, J., & Xiao, J. (2008). Effect of acid and TETA modification on mechanical properties of MWCNTs/epoxy composites. Journal of Materials Science, 43(8), 2653-2658. http://dx.doi.org/10.1007/s10853-008-2489-1.

71 Yang, K., Gu, M., Guo, Y., Pan, X., & Mu, G. (2009). Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon, 47(7), 1723-1737. http://dx.doi.org/10.1016/j.carbon.2009.02.029.

72 Chen, X., Wang, J., Lin, M., Zhong, W., Feng, T., Chen, X., Chen, J., & Xue, F. (2008). Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Materials Science and Engineering A, 492(1-2), 236-242. http://dx.doi.org/10.1016/j.msea.2008.04.044.

73 Fiedler, B., Gojny, F. H., Wichmann, M. H. G., Nolte, M. C. M., & Schulte, K. (2006). Fundamental aspects of nano-reinforced composites. Composites Science and Technology, 66(16), 3115-3125. http://dx.doi.org/10.1016/j.compscitech.2005.01.014.

74 Ganguli, S., Bhuyan, M., Allie, L., & Aglan, H. (2005). Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy. Journal of Materials Science, 40(13), 3593-3595. http://dx.doi.org/10.1007/s10853-005-2891-x.

75 Gojny, F. H., Wichmann, M. H. G., Köpke, U., Fiedler, B., & Schulte, K. (2004). Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Composites Science and Technology, 64(15), 2363-2371. http://dx.doi.org/10.1016/j.compscitech.2004.04.002.

76 Liu, L., & Wagner, H. D. (2005). Rubbery and glassy epoxy resins reinforced with carbon nanotubes. Composites Science and Technology, 65(11-12), 1861-1868. http://dx.doi.org/10.1016/j.compscitech.2005.04.002.

77 Rana, S., Alagirusamy, R., & Joshi, M. (2009). A review on carbon epoxy nanocomposites. Journal of Reinforced Plastics and Composites, 28(4), 461-487. http://dx.doi.org/10.1177/0731684407085417.

78 Rahmat, M., & Hubert, P. (2011). Carbon nanotube–polymer interactions in nanocomposites: a review. Composites Science and Technology, 72(1), 72-84. http://dx.doi.org/10.1016/j.compscitech.2011.10.002.

79 Lee, J. H., Rhee, K. Y., & Lee, J. H. (2010). Effects of moisture absorption and surface modification using 3-aminopropyltriethoxysilane on the tensile and fracture characteristics of MWCNT/epoxy nanocomposites. Applied Surface Science, 256(24), 7658-7667. http://dx.doi.org/10.1016/j.apsusc.2010.06.023.

80 Lachman, N., & Daniel Wagner, H. (2010). Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites. Composites. Part A, Applied Science and Manufacturing, 41(9), 1093-1098. http://dx.doi.org/10.1016/j.compositesa.2009.08.023.

81 Hernández-Pérez, A., Avilés, F., May-Pat, A., Valadez-González, A., Herrera-Franco, P. J., & Bartolo-Pérez, P. (2008). Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes. Composites Science and Technology, 68(6), 1422-1431. http://dx.doi.org/10.1016/j.compscitech.2007.11.001.

82 Ci, L., & Bai, J. (2006). The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness. Composites Science and Technology, 66(3-4), 599-603. http://dx.doi.org/10.1016/j.compscitech.2005.05.020.

83 Thostenson, E. T., & Chou, T.-W. (2006). Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon, 44(14), 3022-3029. http://dx.doi.org/10.1016/j.carbon.2006.05.014.

84 Shelimov, K. B., Esenaliev, R. O., Rinzler, A. G., Huffman, C. B., & Smalley, R. E. (1998). Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chemical Physics Letters, 282(5-6), 429-434. http://dx.doi.org/10.1016/S0009-2614(97)01265-7.

85 Gojny, F., Wichmann, M., Fiedler, B., & Schulte, K. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Composites Science and Technology, 65(15-16), 2300-2313. http://dx.doi.org/10.1016/j.compscitech.2005.04.021.

86 Sun, L., Warren, G. L., O’Reilly, J. Y., Everett, W. N., Lee, S. M., Davis, D., Lagoudas, D., & Sue, H.-J. (2008). Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon, 46(2), 320-328. http://dx.doi.org/10.1016/j.carbon.2007.11.051.

87 Tang, L., Zhang, H., Han, J., Wu, X., & Zhang, Z. (2011). Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Composites, 72(1), 7-13. http://dx.doi.org/10.1016/j.compscitech.2011.07.016.

88 Tsai, J.-L., Huang, B.-H., & Cheng, Y.-L. (2009). Enhancing fracture toughness of glass/epoxy composites by using rubber particles together with silica nanoparticles. Journal of Composite Materials, 43(25), 3107-3123. http://dx.doi.org/10.1177/0021998309345299.

89 Hsieh, T. H., Kinloch, A. J., Masania, K., Sohn Lee, J., Taylor, A. C., & Sprenger, S. (2010). The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. Journal of Materials Science, 45(5), 1193-1210. http://dx.doi.org/10.1007/s10853-009-4064-9.

90 Gouda, P. S. S., Kudari, S. K., Prabhuswamy, S., & Jawali, D. (2011). Fracture toughness of glass-carbon (0/90)s fiber reinforced polymer composite-an experimental and numerical study. Journal of Materials and Materials Characterization & Engineering, 10, 671-682.

91 Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., & Paipetis, A. (2009). Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. Journal of Composite Materials, 43(9), 977-985. http://dx.doi.org/10.1177/0021998308097735.

92 Lee, S.-H., Jeong, J.-S., Lee, Y.-S., & Cheong, S. K. (2013). Interlaminar fracture toughness characteristics of hybrid laminates with nonwoven carbon tissue under severe temperature conditions. Journal of Composite Materials, 47(15), 1865-1875. http://dx.doi.org/10.1177/0021998312451864.

93 Borowski, E., Soliman, E., Kandil, U., & Taha, M. (2015). Interlaminar fracture toughness of CFRP Laminates incorporating multi-walled carbon nanotubes. Polymers, 7(6), 1020-1045. http://dx.doi.org/10.3390/polym7061020.

94 Liu, H.-Y., Wang, G.-T., Mai, Y.-W., & Zeng, Y. (2011). On fracture toughness of nano-particle modified epoxy. Composites. Part B, Engineering, 42(8), 2170-2175. http://dx.doi.org/10.1016/j.compositesb.2011.05.014.

95 Carolan, D., Kinloch, A. J., Ivankovic, A., Sprenger, S., & Taylor, A. C. (2016). Mechanical and fracture performance of carbon fibre reinforced composites with nanoparticle modified matrices. Procedia Structural Integrity, 2, 96-103. http://dx.doi.org/10.1016/j.prostr.2016.06.013.

96 Kishi, H., Kunimitsu, Y., Imade, J., Oshita, S., Morishita, Y., & Asada, M. (2011). Nano-phase structures and mechanical properties of epoxy/acryl triblock copolymer alloys. Polymer, 52(3), 760-768. http://dx.doi.org/10.1016/j.polymer.2010.12.025.

97 Jansen, B. J. P., Tamminga, K. Y., Meijer, H. E. H., & Lemstra, P. J. (1999). Preparation of thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy resins. Polymer, 40(20), 5601-5607. http://dx.doi.org/10.1016/S0032-3861(98)00774-5.

98 Oldak, R. K., Hydro, R. M., & Pearson, R. A. (2007). On the use of triblock copolymers as toughening agents for epoxies. Tampa: Adhesion Society.</bok>

99 Shayegan, M., & Bagheri, R. (2010). The simultaneous effect of silica nanoparticles and rubber particles on the toughness of epoxy polymer. International Journal of Nanomanufacturing, 5(3/4), 232. http://dx.doi.org/10.1504/IJNM.2010.033865.

100 Kim, H. S., & Ma, P. (1996). Correlation between stress-whitening and fracture toughness in rubber-modified epoxies. Journal of Applied Polymer Science, 61(4), 659-662. http://dx.doi.org/10.1002/(SICI)1097-4628(19960725)61:4<659::AID-APP9>3.0.CO;2-K.
 

6037b348a953954e0b377e02 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections