Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Comparison of MA-g-PP effectiveness through mechanical performance of functionalised graphene reinforced polypropylene

Saravanan Natarajan; Rajasekar Rathanasamy; Sathish Kumar Palaniappan; Suresh Velayudham; Hari Bodipatti Subburamamurthy; Kaushik Pal

Downloads: 0
Views: 238


This work aims in developing carboxyl functionalised graphene based PP nanocomposites by using melt mixing method to enhance the mechanical and thermal properties. Maleic anhydride grafted polypropylene was used as a compatibilizer to achieve better compatibility between the non-polar polymer and polar nanofiller. FTIR study confirms the presence of functional groups at corresponding absorption levels. TEM and SEM image shows the uniform distribution of COOH-Gr onto the PP matrix with the addition of MA-g-PP onto it. The tensile strength and young’s modulus of PMG5 depicts better improvement of 62% and 20% compared to neat sample. The increase in storage modulus of 19.02% was obtained for PG and 43.48% for PMG samples. The reduction in tan δ peak confirms the minimum heat buildup and as a result, leads to better damping characteristics of the nanofiller incorporated PP matrix.


functionalised graphene, maleic anhydride grafted polypropylene, polypropylene, scanning electron microscopy, transmission electron microscopy


1 Qiu, F., Yin, X., & Qu, J. P. (2019). Formation of polypropylene/functional graphene oxide nanocomposites with Different FGs loading in elongation flow condition. Polymer Engineering and Science, 59(4), 830-837. http://dx.doi.org/10.1002/pen.25017.

2 Raji, M., Mekhzoum, M. E. M., Rodrigue, D., Qaiss, A., & Bouhfid, R. (2018). Effect of silane functionalization on properties of polypropylene/clay nanocomposites. Composites. Part B, Engineering, 146, 106-115. http://dx.doi.org/10.1016/j.compositesb.2018.04.013.

3 Saravanan, N., Rajasekar, R., Mahalakshmi, S., Sathishkumar, T., Sasikumar, K., & Sahoo, S. (2014). Graphene and modified graphene-based polymer nanocomposites–a review. Journal of Reinforced Plastics and Composites, 33(12), 1158-1170. http://dx.doi.org/10.1177/0731684414524847.

4 Ovid’Ko, I. (2013). Enhanced mechanical properties of polymer-matrix nanocomposites reinforced by graphene inclusions: a review. Reviews on Advanced Materials Science, 34(1), 19-25. Retrieved in 2020, June 17, from http://www.ipme.ru/e-journals/RAMS/no_13413/03_13413_ovidko.pdf

5 Maheshkumar, K., Krishnamurthy, K., Sathish kumar, P., Sahoo, S., Uddin, E., Pal, S., & Rajasekar, R. (2014). Research updates on graphene oxide‐based polymeric nanocomposites. Polymer Composites, 35(12), 2297-2310. http://dx.doi.org/10.1002/pc.22899.

6 Bai, H., Li, C., & Shi, G. (2011). Functional composite materials based on chemically converted graphene. Advanced Materials, 23(9), 1089-1115. http://dx.doi.org/10.1002/adma.201003753. PMid:21360763.

7 Lin, Y., Jin, J., & Song, M. (2011). Preparation and characterisation of covalent polymer functionalized graphene oxide. Journal of Materials Chemistry, 21(10), 3455-3461. http://dx.doi.org/10.1039/C0JM01859G.

8 Ramanathan, T., Abdala, A., Stankovich, S., Dikin, D., Herrera-Alonso, M., Piner, R. D., Adamson, D., Schniepp, H., Chen, X., Ruoff, R., Nguyen, S. T., Aksay, I. A., Prud’Homme, R. K., & Brinson, L. C. (2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3(6), 327-331. http://dx.doi.org/10.1038/nnano.2008.96. PMid:18654541.

9 Modesti, M., Lorenzetti, A., Bon, D., & Besco, S. (2005). Effect of processing conditions on morphology and mechanical properties of compatibilized polypropylene nanocomposites. Polymer, 46(23), 10237-10245. http://dx.doi.org/10.1016/j.polymer.2005.08.035.

10 Mohaiyiddin, M. S., Lin, O. H., Akil, H. M., Yee, T. G., Adik, N. N. A. N., & Villagracia, A. R. (2016). Effects of polypropylene methyl polyhedral oligomeric silsesquioxanes and polypropylene-grafted maleic anhydride compatibilizers on the properties of palm kernel shell reinforced polypropylene biocomposites. Polímeros: Ciência e Tecnologia, 26(3), 228-235. http://dx.doi.org/10.1590/0104-1428.2038.

11 Kalaitzidou, K., Fukushima, H., & Drzal, L. T. (2007). Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites. Composites. Part A, Applied Science and Manufacturing, 38(7), 1675-1682. http://dx.doi.org/10.1016/j.compositesa.2007.02.003.

12 Sahoo, S., Karthikeyan, G., Nayak, G., & Das, C. K. (2012). Modified graphene/polyaniline nanocomposites for supercapacitor application. Macromolecular Research, 20(4), 415-421. http://dx.doi.org/10.1007/s13233-012-0042-1.

13 Rajasekar, R., Kim, N. H., Jung, D., Kuila, T., Lim, J. K., Park, M. J., & Lee, J. H. (2013). Electrostatically assembled layer-by-layer composites containing graphene oxide for enhanced hydrogen gas barrier application. Composites Science and Technology, 89, 167-174. http://dx.doi.org/10.1016/j.compscitech.2013.10.004.

14 Lei, S., Hoa, S. V., & Ton-That, M.-T. (2006). Effect of clay types on the processing and properties of polypropylene nanocomposites. Composites Science and Technology, 66(10), 1274-1279. http://dx.doi.org/10.1016/j.compscitech.2005.09.012.

15 Pal, K., Rajasekar, R., Kang, D. J., Zhang, Z. X., Pal, S. K., Das, C. K., & Kim, J. K. (2010). Effect of filler and urethane rubber on NR/BR with nanosilica: morphology and wear. Journal of Thermoplastic Composite Materials, 23(5), 717-739. http://dx.doi.org/10.1177/0892705709355234.

16 Nikje, M. M. A., Moghaddam, S. T., & Noruzian, M. (2016). Preparation of novel magnetic polyurethane foam nanocomposites by using core-shell nanoparticles. Polímeros: Ciência e Tecnologia, 26(4), 297-303. http://dx.doi.org/10.1590/0104-1428.2193.

17 Choi, E.-Y., Han, T. H., Hong, J., Kim, J. E., Lee, S. H., Kim, H. W., & Kim, S. O. (2010). Noncovalent functionalization of graphene with end-functional polymers. Journal of Materials Chemistry, 20(10), 1907-1912. http://dx.doi.org/10.1039/b919074k.

18 Song, P., Cao, Z., Cai, Y., Zhao, L., Fang, Z., & Fu, S. (2011). Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer, 52(18), 4001-4010. http://dx.doi.org/10.1016/j.polymer.2011.06.045.

19 Simanke, A. G., Azeredo, A. P., Lemos, C., & Mauler, R. S. (2016). Influence of nucleating agent on the crystallization kinetics and morphology of polypropylene. Polímeros: Ciência e Tecnologia, 26(2), 152-160. http://dx.doi.org/10.1590/0104-1428.2053.

20 Kumar, K. V. M., Krishnamurthy, K., Rajasekar, R., Kumar, P. S., Pal, K., & Nayak, G. C. (2019). Influence of graphene oxide on the static and dynamic mechanical behavior of compatibilized polypropylene nanocomposites. Materials Testing, 61(10), 986-990. http://dx.doi.org/10.3139/120.111411.

21 Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., & Chen, Y. (2009). Molecular‐level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Advanced Functional Materials, 19(14), 2297-2302. http://dx.doi.org/10.1002/adfm.200801776.

22 Xu, Y., Hong, W., Bai, H., Li, C., & Shi, G. (2009). Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon, 47(15), 3538-3543. http://dx.doi.org/10.1016/j.carbon.2009.08.022.

23 Lee, Y. R., Raghu, A. V., Jeong, H. M., & Kim, B. K. (2009). Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromolecular Chemistry and Physics, 210(15), 1247-1254. http://dx.doi.org/10.1002/macp.200900157.

24 Raghu, A. V., Lee, Y. R., Jeong, H. M., & Shin, C. M. (2008). Preparation and physical properties of waterborne polyurethane/functionalized graphene sheet nanocomposites. Macromolecular Chemistry and Physics, 209(24), 2487-2493. http://dx.doi.org/10.1002/macp.200800395.

6037b7caa9539555c85d6972 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections