Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Comparison of MA-g-PP effectiveness through mechanical performance of functionalised graphene reinforced polypropylene

Saravanan Natarajan; Rajasekar Rathanasamy; Sathish Kumar Palaniappan; Suresh Velayudham; Hari Bodipatti Subburamamurthy; Kaushik Pal

Downloads: 0
Views: 80


This work aims in developing carboxyl functionalised graphene based PP nanocomposites by using melt mixing method to enhance the mechanical and thermal properties. Maleic anhydride grafted polypropylene was used as a compatibilizer to achieve better compatibility between the non-polar polymer and polar nanofiller. FTIR study confirms the presence of functional groups at corresponding absorption levels. TEM and SEM image shows the uniform distribution of COOH-Gr onto the PP matrix with the addition of MA-g-PP onto it. The tensile strength and young’s modulus of PMG5 depicts better improvement of 62% and 20% compared to neat sample. The increase in storage modulus of 19.02% was obtained for PG and 43.48% for PMG samples. The reduction in tan δ peak confirms the minimum heat buildup and as a result, leads to better damping characteristics of the nanofiller incorporated PP matrix.


functionalised graphene, maleic anhydride grafted polypropylene, polypropylene, scanning electron microscopy, transmission electron microscopy


1 Qiu, F., Yin, X., & Qu, J. P. (2019). Formation of polypropylene/functional graphene oxide nanocomposites with Different FGs loading in elongation flow condition. Polymer Engineering and Science, 59(4), 830-837. http://dx.doi.org/10.1002/pen.25017.

2 Raji, M., Mekhzoum, M. E. M., Rodrigue, D., Qaiss, A., & Bouhfid, R. (2018). Effect of silane functionalization on properties of polypropylene/clay nanocomposites. Composites. Part B, Engineering, 146, 106-115. http://dx.doi.org/10.1016/j.compositesb.2018.04.013.

3 Saravanan, N., Rajasekar, R., Mahalakshmi, S., Sathishkumar, T., Sasikumar, K., & Sahoo, S. (2014). Graphene and modified graphene-based polymer nanocomposites–a review. Journal of Reinforced Plastics and Composites, 33(12), 1158-1170. http://dx.doi.org/10.1177/0731684414524847.

4 Ovid’Ko, I. (2013). Enhanced mechanical properties of polymer-matrix nanocomposites reinforced by graphene inclusions: a review. Reviews on Advanced Materials Science, 34(1), 19-25. Retrieved in 2020, June 17, from http://www.ipme.ru/e-journals/RAMS/no_13413/03_13413_ovidko.pdf

5 Maheshkumar, K., Krishnamurthy, K., Sathish kumar, P., Sahoo, S., Uddin, E., Pal, S., & Rajasekar, R. (2014). Research updates on graphene oxide‐based polymeric nanocomposites. Polymer Composites, 35(12), 2297-2310. http://dx.doi.org/10.1002/pc.22899.

6 Bai, H., Li, C., & Shi, G. (2011). Functional composite materials based on chemically converted graphene. Advanced Materials, 23(9), 1089-1115. http://dx.doi.org/10.1002/adma.201003753. PMid:21360763.

7 Lin, Y., Jin, J., & Song, M. (2011). Preparation and characterisation of covalent polymer functionalized graphene oxide. Journal of Materials Chemistry, 21(10), 3455-3461. http://dx.doi.org/10.1039/C0JM01859G.

8 Ramanathan, T., Abdala, A., Stankovich, S., Dikin, D., Herrera-Alonso, M., Piner, R. D., Adamson, D., Schniepp, H., Chen, X., Ruoff, R., Nguyen, S. T., Aksay, I. A., Prud’Homme, R. K., & Brinson, L. C. (2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3(6), 327-331. http://dx.doi.org/10.1038/nnano.2008.96. PMid:18654541.

9 Modesti, M., Lorenzetti, A., Bon, D., & Besco, S. (2005). Effect of processing conditions on morphology and mechanical properties of compatibilized polypropylene nanocomposites. Polymer, 46(23), 10237-10245. http://dx.doi.org/10.1016/j.polymer.2005.08.035.

10 Mohaiyiddin, M. S., Lin, O. H., Akil, H. M., Yee, T. G., Adik, N. N. A. N., & Villagracia, A. R. (2016). Effects of polypropylene methyl polyhedral oligomeric silsesquioxanes and polypropylene-grafted maleic anhydride compatibilizers on the properties of palm kernel shell reinforced polypropylene biocomposites. Polímeros: Ciência e Tecnologia, 26(3), 228-235. http://dx.doi.org/10.1590/0104-1428.2038.

11 Kalaitzidou, K., Fukushima, H., & Drzal, L. T. (2007). Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites. Composites. Part A, Applied Science and Manufacturing, 38(7), 1675-1682. http://dx.doi.org/10.1016/j.compositesa.2007.02.003.

12 Sahoo, S., Karthikeyan, G., Nayak, G., & Das, C. K. (2012). Modified graphene/polyaniline nanocomposites for supercapacitor application. Macromolecular Research, 20(4), 415-421. http://dx.doi.org/10.1007/s13233-012-0042-1.

13 Rajasekar, R., Kim, N. H., Jung, D., Kuila, T., Lim, J. K., Park, M. J., & Lee, J. H. (2013). Electrostatically assembled layer-by-layer composites containing graphene oxide for enhanced hydrogen gas barrier application. Composites Science and Technology, 89, 167-174. http://dx.doi.org/10.1016/j.compscitech.2013.10.004.

14 Lei, S., Hoa, S. V., & Ton-That, M.-T. (2006). Effect of clay types on the processing and properties of polypropylene nanocomposites. Composites Science and Technology, 66(10), 1274-1279. http://dx.doi.org/10.1016/j.compscitech.2005.09.012.

15 Pal, K., Rajasekar, R., Kang, D. J., Zhang, Z. X., Pal, S. K., Das, C. K., & Kim, J. K. (2010). Effect of filler and urethane rubber on NR/BR with nanosilica: morphology and wear. Journal of Thermoplastic Composite Materials, 23(5), 717-739. http://dx.doi.org/10.1177/0892705709355234.

16 Nikje, M. M. A., Moghaddam, S. T., & Noruzian, M. (2016). Preparation of novel magnetic polyurethane foam nanocomposites by using core-shell nanoparticles. Polímeros: Ciência e Tecnologia, 26(4), 297-303. http://dx.doi.org/10.1590/0104-1428.2193.

17 Choi, E.-Y., Han, T. H., Hong, J., Kim, J. E., Lee, S. H., Kim, H. W., & Kim, S. O. (2010). Noncovalent functionalization of graphene with end-functional polymers. Journal of Materials Chemistry, 20(10), 1907-1912. http://dx.doi.org/10.1039/b919074k.

18 Song, P., Cao, Z., Cai, Y., Zhao, L., Fang, Z., & Fu, S. (2011). Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer, 52(18), 4001-4010. http://dx.doi.org/10.1016/j.polymer.2011.06.045.

19 Simanke, A. G., Azeredo, A. P., Lemos, C., & Mauler, R. S. (2016). Influence of nucleating agent on the crystallization kinetics and morphology of polypropylene. Polímeros: Ciência e Tecnologia, 26(2), 152-160. http://dx.doi.org/10.1590/0104-1428.2053.

20 Kumar, K. V. M., Krishnamurthy, K., Rajasekar, R., Kumar, P. S., Pal, K., & Nayak, G. C. (2019). Influence of graphene oxide on the static and dynamic mechanical behavior of compatibilized polypropylene nanocomposites. Materials Testing, 61(10), 986-990. http://dx.doi.org/10.3139/120.111411.

21 Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., & Chen, Y. (2009). Molecular‐level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Advanced Functional Materials, 19(14), 2297-2302. http://dx.doi.org/10.1002/adfm.200801776.

22 Xu, Y., Hong, W., Bai, H., Li, C., & Shi, G. (2009). Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon, 47(15), 3538-3543. http://dx.doi.org/10.1016/j.carbon.2009.08.022.

23 Lee, Y. R., Raghu, A. V., Jeong, H. M., & Kim, B. K. (2009). Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromolecular Chemistry and Physics, 210(15), 1247-1254. http://dx.doi.org/10.1002/macp.200900157.

24 Raghu, A. V., Lee, Y. R., Jeong, H. M., & Shin, C. M. (2008). Preparation and physical properties of waterborne polyurethane/functionalized graphene sheet nanocomposites. Macromolecular Chemistry and Physics, 209(24), 2487-2493. http://dx.doi.org/10.1002/macp.200800395.

6037b7caa9539555c85d6972 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections