Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.05617
Polímeros: Ciência e Tecnologia
Original Article

Natural ageing of polyaramide fiber from ballistic armor

Konarzewski, Vitor Hugo Cordeiro; Spiekemann, Fernando Ludgero; Santana, Ruth Marlene Campomanes

Downloads: 0
Views: 259

Abstract

Abstract: Ballistic armor has been manufactured primarily based on polyaramide (Kevlar and Twaron) or Dyneema but the lifespan warranty in Brazil is only 5 years and after this time period they are incinerated or comminuted and ground up. This study aims to evaluate the changes on the physical, mechanical and morphological properties of polyaramide fibers of ballistic armor after natural aging. These samples with different fabrication (2005 and 2010) and usage time were exposed to natural weathering in the city of Porto Alegre, southern Brazil, during the period of one year. Morphology fiber results surfaced after ageing, it showed fiber swelling, stress cracking and defibrillation, and the results of the mechanical tensile testing of the polyaramide fibers showed a pronounced decrease (80%) in tensile strength. It can be concluded that the weight, the dtex of the fiber and the kind of fabric can influence the degradation degree under natural exposure.

Keywords

ballistic armor; aramid fibers; polymer degradation

References

1 Companhia Brasileira de Cartuchos – CBC. (2017, March 16). Coletes balísticos . Retrieved in 2017, September 8, from http://www.cbc.com.br/coletes-balisticos-subcat-29.html#aramida 

2 Brasil. Ministério da Ciência, Tecnologia, Inovações e Comunicações. Centro de Gestão e Estudos Estratégicos. (2010). Materiais avançados: 2010-2022. Brasília: MCTI. 

3 Brasil. Ministério da Defesa. Exército Brasileiro. (2006, February 23). Portaria nº 18 - D LOG. Aprova as normas reguladoras da avaliação técnica, fabricação, aquisição, importação e destruição de coletes à prova de balas. Diário Oficial da República Federativa do Brasil, Brasil. 

4 Brasil. Ministério da Defesa. Exército Brasileiro. (2015). Relatório do comando de operações terrestres. Brasília: Ministério da Defesa.

5 Brigada Militar. (2006). Norma de instrução operacional nº 17. Porto Alegre: EMBM. 

6 Rebouillat, S. (2001). Aramids. In J. W. S. Hearle (Ed.), High-performance fibres (pp. 31-69). England: Woodhead Publishing. 

7 Askeland, D. R., & Jones, D. R. H. (1998). The science and engineering of materials (3rd ed.). Columbia: University of Missouri. 

8 Mano, E. B. (2011). Polímeros como materiais de engenharia. São Paulo: Blücher. 

9 Canevarolo, S. V., Jr. (2010). Ciência dos polímeros: um texto básico para tecnólogos e engenheiros. São Paulo: Artiber. 

10 Bandaru, A. K., Vetiyatil, L., & Ahmad, S. (2015). The effect of hybridization on the ballistic impact behavior of hybrid composite armors. Composites. Part B, Engineering , 76, 300-319. http://dx.doi.org/10.1016/j.compositesb.2015.03.012. 

11 Allen, S. R., & Roche, E. J. (1989). Deformation behaviour of Kevlar® aramid fibres. Polymer30(6), 996-1003. http://dx.doi.org/10.1016/0032-3861(89)90069-4. 

12 Bittencourt, G. A. (2011). Efeito da radiação gama em blindagens balísticas compósitas de poliaramida(Master’s thesis). Instituto Militar de Engenharia, Rio de Janeiro. 

13 Bendada, A., Sfarra, S., Genest, M., Paoletti, D., Rott, S., Talmy, E., Ibarra-Castanedo, C., & Maldague, X. (2013). How to reveal sussurface defects in kevlar composite materials after an impact loading using infrared vision and optical NDT techniques. Engineering Fracture Mechanics108, 195-208. http://dx.doi.org/10.1016/j.engfracmech.2013.02.030. 

14 Assis, F. S. (2016). Comportamento balístico de blindagem multicamadas com compósitos de poliéster reforçados com fibras de juta (Master’s thesis). Instituto Militar de Engenharia, Rio de Janeiro. 

15 Saijo, K., Arimoto, O., Hashimoto, T., Fukuda, M., & Kawai, H. (1994). Moistures sorption mechanism of aromatic polyamide fibers: diffusion of moistures into regular Kevlar as observed by time resolved small angle X ray scattering technique. Polymer35(3), 496-503. http://dx.doi.org/10.1016/0032-3861(94)90502-9. 

16 Bourbigot, S., Flambard, X., & Poutch, F. (2001). Study of thermal degradation of high performance fibers-application to polybenzazole and p-aramide fibers. Polymer Degradation & Stability74(2), 283-290. http://dx.doi.org/10.1016/S0141-3910(01)00159-8. 

17 Yang, H. H. (1993). Kevlar aramid fiber. Chichester: John Wiley & Sons. 

18 Hearle, J. W. S. (2001). High-performance fibers. Boca Raton: CRC Press. 

19 Callister, W. D., Jr. (2002). Ciência e engenharia de materiais: uma introdução . Rio de Janeiro: LTC. 

20 Rebouillat, S., Peng, J. C. M., & Donnet, J.-B. (1999). Surface structure of Kevlar fiber studie by atomic force microscopy and inverse gas cromatography. Polymer , 40(26), 7341-7350. http://dx.doi.org/10.1016/S0032-3861(99)00040-3. 

21 Bencomo-Cisneros, J. A., Tejeda-Ochoa, A., García-Estrada, J. A., Herrera-Ramírez, C. A., Hurtado-Macías, A., Martínez-Sánchez, R., & Herrera-Ramírez, J. M. (2012). Characterization of Kevlar-29 fibers by tensile tests and nanoindentation. Journal of Alloys and Compounds536(Suppl 1), S456-S459. http://dx.doi.org/10.1016/j.jallcom.2011.11.031. 

22 DuPont. (2010). Manual técnico Kevlar® fibra de aramida . São Paulo: DuPont Advanced Fibers Systems. 

23 Aguiar, P. P. N. (1996). Fibras têxteis. Rio de Janeiro: SENAI-DN 

24 Pardini, L. C., & Levy, F. N. (2006). Compósitos estruturais: ciência e tecnologia. São Paulo: Blücher. 

25 Lin, T., Wu, S., Lai, J., & Shyu, S. (2000). The effect of chemical treatment on reinforcement/matrix interactions in Kevlar-fiber/bismaleimide composites. Composites Science and Technology60(9), 1873-1878. http://dx.doi.org/10.1016/S0266-3538(00)00074-9. 

26 Wang, H., Xie, H., Hu, Z., Wu, D., & Chen, P. (2012). The influence of UV radiation and moisture on the mechanical properties and micro-structure of single Kevlar fibre using optical methods. Polymer Degradation & Stability97(9), 1755-1761. http://dx.doi.org/10.1016/j.polymdegradstab.2012.06.010. 

27 De Paoli, M. A. (2008). Degradação e estabilização de polímeros. São Paulo: Artliber.

28 Santos, A. S. F., Agnelli, J. A. M., Trevisan, D. W., & Manrich, S. (2002). Degradation and stabilization of polyolefin from municipal plastics waste during multiple extrusions under different eprocessing conditions. Polymer Degradation & Stability , 77(3), 441-447. http://dx.doi.org/10.1016/S0141-3910(02)00101-5. 

29 Bertin, D. M., Larissa, S., Catto, A. L., Camargo, M. M. F., Chiellini, E., Corti, A., Morelli, A., & Campomanes, R. M. S. (2010). Polypropylene degradation: theoretical and experimental investigation. Polymer Degradation & Stability95(5), 186-192. http://dx.doi.org/10.1016/j.polymdegradstab.2010.02.006. 

30 Arrieta, C., David, E., Dolez, P., & Vu-Khanh, T. (2011). Hydrolytic and photochemical aging studies of a Kevlar®-PBI blend. Polymer Degradation & Stability , 96(8), 1411-1419. http://dx.doi.org/10.1016/j.polymdegradstab.2011.05.015.

31 American Society for Testing and Materials – ASTM. (1996). ASTM G 53-96: operating light and water-exposure apparatus (fluorescent UV-condensation type) for exposure of nonmetallic materials. West Conshohocken: ASTM International. 

32 Ashby, M. F., & Jones, D. R. H. (2007). Engenharia de materiais. Rio de Janeiro: Elsevier. 

33 Morgan, R. J., & Pruneda, C. O. (1987). The caracterization of the chemical impurities in Kevlar 49 fibers. Polymer28(2), 340-346. http://dx.doi.org/10.1016/0032-3861(87)90428-9. 

34 Billingham, N. C. (2002). Fundamentals of degradation and stabilizations of polymers. In F. La Mantia (Ed.), Handbook of plastic recycling (pp. 23-64). Shrewsbury: Rapra Technology. 

35 Zhang, H. T. (2010). Comparison and analysis of thermal degradation process of aramid fibers. Journal of Fiber Bioengineering and Informatics3(3), 163-167. http://dx.doi.org/10.3993/jfbi12201008. 

36 Zhu, F. L., Feng, Q. Q., Xin, Q., & Zhou, Y. (2014). Thermal degradation process os polysulphone aramid fiber. Thermal Science18(5), 1637-1641. http://dx.doi.org/10.2298/TSCI1405637Z. 

37 Rosa, D. S., & Filho, R. P. (2003). Biodegradação: um ensaio com polímeros. São Paulo: Moara. 

38 Wan, Y. Z., Wang, Y. L., Huang, Y., Luo, H. L., He, F., & Chen, G. C. (2006). Moisture absorption in a three dimensional braided carbon/Kevlar/epoxy hybrid composite for orthopaedic usage and its influence on mechanical performance. Composites. Part A, Applied Science and Manufacturing37(9), 1480-1484. http://dx.doi.org/10.1016/j.compositesa.2005.09.009.

39 Dupont. (2015, 3 February). Technical guide Kevlar: Kevlar® properties . Retrieved in 2017, September 8, from http://www2.dupont.com/Kevlar/en_US/assets/downloads/KEVLAR_Technical_Guide.pdf 

40 Teijin. (2017, 3 February). Teijin aramid ballistics material handbook . Retrieved in 2017, September 8, from http://www.teijinaramid.com/wp-content/uploads/2016/05/Teijin-Aramid-Ballistics-Material-Handbook.pdf 

41 American Society for Testing and Materials – ASTM. (2013). ASTM D1435-13: standard pratice for outdor weathering of plastics. West Conshohocken: ASTM International. 

42 American Society for Testing and Materials – ASTM. (2011). ASTM D7269M-11: standard test methods for tensile testing of aramid yarns. West Conshohocken: ASTM International.

43 American Society for Testing and Materials – ASTM. (2014). ASTM D3822M-14: standard test method for tensile poperties of single textile fibers. West Conshohocken: ASTM International. 

44 Holler, F. J., Skoog, D. A., & Crouch, S. R. (2009). Princípios de análise instrumental. Porto Alegre: Bookman. 

5cb783800e8825311bce6ba5 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections