Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Acoustic approach of weldability for nanocomposite (nanosilica/PA6) welded by ultrasonic welding

Ribeiro, Anderson; Casanova, Jaime; Brandi, Sérgio Duarte; Pinheiro, Diego de Moura

Downloads: 0
Views: 177


Polymer matrix nanocomposites (NMP) have attracted a great interest mainly in the automotive, aerospace and medical industries since they have good mechanical properties, dimensional, thermal and chemical stability, as well as interesting electrical conductivity and cost reduction in the manufacturing process. However, welding of this class of materials presents serious challenges such as improving weldability of the joint and understanding the mechanisms responsible for coalescence. The objective of this work was to evaluate the coalescence of an NMP joint (comprising a PA6 matrix and with nanosilica of different percentages of silicon) using ultrasonic welding, as well as to perform an acoustic approach of the energy dissipation during the welding process. It is concluded that the NMP samples tend to show better coalescence as the percentage of nanosilica increases, up to a certain limit. On the other hand, the higher the content of nanoparticle the smaller the energy absorption.


ultrasonic welding, nanocomposite, acoustics, sound spectral.


1 Rashli, R., Bakar, E. A., Kamaruddin, S., & Othman, A. R. (2013). A review of ultrasonic welding of thermoplastic composites. Caspian Journal of Applied Sciences Research2(3), 1-16. Retrieved in 2019, July 11, from http://www.cjasr.com/images/manuscripts/2013/03/cjasr/01_CJASR-12-16-307.pdf 

2 Liu, S. J., Chang, I.-T., & Hung, S.-W. (2001). Factors affecting the joint strength of ultrasonically welded polypropylene composites. Polymer Composites22(1), 132-141. http://dx.doi.org/10.1002/pc.10525

3 Villegas, I. F., & Palardy, G. (2017). Ultrasonic welding of CF/PPS composites with integrated triangular energy directors: melting, flow and weld strength development. Composite Interfaces24(5), 515-528. http://dx.doi.org/10.1080/09276440.2017.1236626

4 Lehmann, B., Schlarb, A. K., Friedrich, K., Zhang, M. Q., & Rong, M. Z. (2008). Modelling of mechanical properties of nanoparticle-filled polyethylene. International Journal of Polymeric Materials and Polymeric Biomaterials57(1), 81-100. http://dx.doi.org/10.1080/00914030701337232

5 Han, Z., & Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress in Polymer Science36(7), 914-944. http://dx.doi.org/10.1016/j.progpolymsci.2010.11.004

6 Kim, H., Miura, Y., & Macosko, C. W. (2010). Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chemistry of Materials22(11), 3441-3450. http://dx.doi.org/10.1021/cm100477v

7 Arul Selvan, S. G., Rajasekar, R., Kalidass, M., & Selwin, M. (2017). Vibration and ultrasonic welding behaviour of polymers and polymer composites: a review. Journal of Chemical and Pharmaceutical Sciences2017(3), 55-61. Retrieved in 2019, July 11, from https://www.jchps.com/specialissues/2017%20Special%20Issue%203/MKCE_MECH%2012.pdf 

8 Lin, L., & Schlarb, A. K. (2015). Vibration welding of polypropylene-based nanocomposites – The crucial stage for the weld quality. Composites Part B, Engineering68, 193-199. http://dx.doi.org/10.1016/j.compositesb.2014.08.052

9 Flowers, S., Thomas, J., Mokhtarzadeh, A., & Benatar, A. (2006). Study of ultrasonic welding of hdpe-based nanoclay composites. In ANTEC 2006 Plastics: Annual Technical Conference Proceedings (pp. 2189-2193). Charlotte: Society of Plastics Engineers.

10 Benatar, A., & Gutowski, T. G. (1989). Ultrasonic welding of PEEK graphite APC-2 composites. Polymer Engineering and Science29(23), 1705-1721. http://dx.doi.org/10.1002/pen.760292313

11 SpectraLAB. (1998). FFT Spectral Analysis System. Version 4.32.14. Sound Technology. 

12 Lyashko, F. E., & Sokolova, O. F. Method of ultrasound welding thermoplastic. Patent 2220917 kl. B 29 C 65/08. Russia. 

13 Raza, S. F. (2015). Ultrasonic welding of thermoplastics (Doctoral thesis). The University of Sheffield, United Kingdom. 

14 Khmelev, V. N., Slivin, A. N., & Abramov, A. D. (2017). Model of process and calculation of energy for a heat generation of a welded joint at ultrasonic welding polymeric thermoplastic materials. In 8th Siberian Russian Workshop and Tutorial on Electron Devices and Materials (pp. 316-322). Erlagol: IEEE. http://dx.doi.org/10.1109/SIBEDM.2007.4292995 

15 Grewe, M. G., Gururaja, T. R., Shrout, T. R., & Newnham, R. E. (1990). Acoustic properties of particle/polymer composites for ultrasonic transducer backing applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control37(6), 506-514. http://dx.doi.org/10.1109/58.63106. PMid:18285071. 

16 Nargund, S. (2016). Evaluation of stress wave attenuation in a polymer matrix composite using finite element analysis technique. In ASME 2016 International Mechanical Engineering Congress and Exposition (pp. 1-9, Paper No: IMECE2016-67055, V010T13A018). Phoenix: ASME. http://dx.doi.org/10.1115/IMECE2016-67055 

17 Garcia, M., Vliet, G. V., Jain, S., Zyl, W. E. V., & Boukamp, B. (2004). Polypropylene/SiO2 nanocomposites with improved mechanical properties. Reviews on Advanced Materials Science6(2), 169-175. Retrieved in 2019, July 11, from https://research.tue.nl/en/publications/polypropylenesio2-nanocomposites-with-improved-mechanical-propert 

18 Zhou, T. H., Ruan, W. H., Mai, Y. L., Rong, M. Z., & Zhang, M. Q. (2008). Performance improvement of nano-silica-polypropylene composites through in-situ cross-linking approach. Composites Science and Technology68(14), 2858-2863. http://dx.doi.org/10.1016/j.compscitech.2007.10.002.

19 Pflug, G., Gladitz, M., & Reinemann, S. (2009). Wärme besser leiten. Kunststoffe12, 54-60. Retrieved in 2019, July 11, from https://www.kunststoffe.de/_storage/asset/538981/storage/master/file/5806046/download/W%C3%A4rme%20besser%20leiten.pdf 

20 Rosato, D. V. (1990). Plastics processing data handbook. New York: Van Nostrand Reinhold. http://dx.doi.org/10.1007/978-94-010-9658-4

21 Fitzgibbon, W. E., & Wheeler, M. F. (1992). Wave propagation and inversion. Philadelphia: SIAM. 

22 Benatar, A., & Cheng, Z. (1989). Ultrasonic welding of thermoplastics in the far-field. Polymer Engineering and Science29(23), 1699-1704. http://dx.doi.org/10.1002/pen.760292312

5eb2f2e50e8825cd37d76ee0 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections