Acoustic approach of weldability for nanocomposite (nanosilica/PA6) welded by ultrasonic welding
Ribeiro, Anderson; Casanova, Jaime; Brandi, Sérgio Duarte; Pinheiro, Diego de Moura
Abstract
Keywords
References
1 Rashli, R., Bakar, E. A., Kamaruddin, S., & Othman, A. R. (2013). A review of ultrasonic welding of thermoplastic composites. Caspian Journal of Applied Sciences Research, 2(3), 1-16. Retrieved in 2019, July 11, from http://www.cjasr.com/images/manuscripts/2013/03/cjasr/01_CJASR-12-16-307.pdf
2 Liu, S. J., Chang, I.-T., & Hung, S.-W. (2001). Factors affecting the joint strength of ultrasonically welded polypropylene composites. Polymer Composites, 22(1), 132-141. http://dx.doi.org/10.1002/pc.10525.
3 Villegas, I. F., & Palardy, G. (2017). Ultrasonic welding of CF/PPS composites with integrated triangular energy directors: melting, flow and weld strength development. Composite Interfaces, 24(5), 515-528. http://dx.doi.org/10.1080/09276440.2017.1236626.
4 Lehmann, B., Schlarb, A. K., Friedrich, K., Zhang, M. Q., & Rong, M. Z. (2008). Modelling of mechanical properties of nanoparticle-filled polyethylene. International Journal of Polymeric Materials and Polymeric Biomaterials, 57(1), 81-100. http://dx.doi.org/10.1080/00914030701337232.
5 Han, Z., & Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress in Polymer Science, 36(7), 914-944. http://dx.doi.org/10.1016/j.progpolymsci.2010.11.004.
6 Kim, H., Miura, Y., & Macosko, C. W. (2010). Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chemistry of Materials, 22(11), 3441-3450. http://dx.doi.org/10.1021/cm100477v.
7 Arul Selvan, S. G., Rajasekar, R., Kalidass, M., & Selwin, M. (2017). Vibration and ultrasonic welding behaviour of polymers and polymer composites: a review. Journal of Chemical and Pharmaceutical Sciences, 2017(3), 55-61. Retrieved in 2019, July 11, from https://www.jchps.com/specialissues/2017%20Special%20Issue%203/MKCE_MECH%2012.pdf
8 Lin, L., & Schlarb, A. K. (2015). Vibration welding of polypropylene-based nanocomposites – The crucial stage for the weld quality. Composites Part B, Engineering, 68, 193-199. http://dx.doi.org/10.1016/j.compositesb.2014.08.052.
9 Flowers, S., Thomas, J., Mokhtarzadeh, A., & Benatar, A. (2006). Study of ultrasonic welding of hdpe-based nanoclay composites. In ANTEC 2006 Plastics: Annual Technical Conference Proceedings (pp. 2189-2193). Charlotte: Society of Plastics Engineers.
10 Benatar, A., & Gutowski, T. G. (1989). Ultrasonic welding of PEEK graphite APC-2 composites. Polymer Engineering and Science, 29(23), 1705-1721. http://dx.doi.org/10.1002/pen.760292313.
11 SpectraLAB. (1998). FFT Spectral Analysis System. Version 4.32.14. Sound Technology.
12 Lyashko, F. E., & Sokolova, O. F. Method of ultrasound welding thermoplastic. Patent 2220917 kl. B 29 C 65/08. Russia.
13 Raza, S. F. (2015). Ultrasonic welding of thermoplastics (Doctoral thesis). The University of Sheffield, United Kingdom.
14 Khmelev, V. N., Slivin, A. N., & Abramov, A. D. (2017). Model of process and calculation of energy for a heat generation of a welded joint at ultrasonic welding polymeric thermoplastic materials. In 8th Siberian Russian Workshop and Tutorial on Electron Devices and Materials (pp. 316-322). Erlagol: IEEE. http://dx.doi.org/10.1109/SIBEDM.2007.4292995
15 Grewe, M. G., Gururaja, T. R., Shrout, T. R., & Newnham, R. E. (1990). Acoustic properties of particle/polymer composites for ultrasonic transducer backing applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 37(6), 506-514. http://dx.doi.org/10.1109/58.63106. PMid:18285071.
16 Nargund, S. (2016). Evaluation of stress wave attenuation in a polymer matrix composite using finite element analysis technique. In ASME 2016 International Mechanical Engineering Congress and Exposition (pp. 1-9, Paper No: IMECE2016-67055, V010T13A018). Phoenix: ASME. http://dx.doi.org/10.1115/IMECE2016-67055
17 Garcia, M., Vliet, G. V., Jain, S., Zyl, W. E. V., & Boukamp, B. (2004). Polypropylene/SiO2 nanocomposites with improved mechanical properties. Reviews on Advanced Materials Science, 6(2), 169-175. Retrieved in 2019, July 11, from https://research.tue.nl/en/publications/polypropylenesio2-nanocomposites-with-improved-mechanical-propert
18 Zhou, T. H., Ruan, W. H., Mai, Y. L., Rong, M. Z., & Zhang, M. Q. (2008). Performance improvement of nano-silica-polypropylene composites through in-situ cross-linking approach. Composites Science and Technology, 68(14), 2858-2863. http://dx.doi.org/10.1016/j.compscitech.2007.10.002.
19 Pflug, G., Gladitz, M., & Reinemann, S. (2009). Wärme besser leiten. Kunststoffe, 12, 54-60. Retrieved in 2019, July 11, from https://www.kunststoffe.de/_storage/asset/538981/storage/master/file/5806046/download/W%C3%A4rme%20besser%20leiten.pdf
20 Rosato, D. V. (1990). Plastics processing data handbook. New York: Van Nostrand Reinhold. http://dx.doi.org/10.1007/978-94-010-9658-4.
21 Fitzgibbon, W. E., & Wheeler, M. F. (1992). Wave propagation and inversion. Philadelphia: SIAM.
22 Benatar, A., & Cheng, Z. (1989). Ultrasonic welding of thermoplastics in the far-field. Polymer Engineering and Science, 29(23), 1699-1704. http://dx.doi.org/10.1002/pen.760292312.