Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.05518
Polímeros: Ciência e Tecnologia
Original Article

Disposable coffee capsules as a source of recycled polypropylene

Michel Lincoln Bueno Domingues; Jean Rodrigo Bocca; Silvia Luciana Fávaro; Eduardo Radovanovic

Downloads: 0
Views: 563

Abstract

In this paper was investigated the chemical, physical, thermal, mechanical and morphological characteristics of the recyclable materials obtained of the NESCAFÉ® DOLCE GUSTO® branded beverage capsules, characterizing different resulting compositions. The characterization was made by following techniques: Fourier-transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Water Absorption and techniques for the analysis of mechanical properties (tensile and impact test). The results showed that the body of the capsule and the inner filter, both made of polypropylene, are the most interesting materials to be reused, having good properties, while the materials resulting from the mixtures of all the constituents in the beverage capsules presented decreased mechanical properties.

 

Keywords

disposable capsules, polypropylene, recycling, mechanical properties

References

1 O Negócio do Varejo Magazine. (2019). Retrieved in 2019, October 10, from http://onegociodovarejo.com.br/rivais-ameacam-lideranca-da-nespresso-nas-capsulas-de-cafe/

2 Pacheco P. (2010). Todos querem ser um Nespresso - Com o fim de patente de cápsula, empresas lançam genéricos do café da Nestlé. O Estado de S. Paulo. In Revista Cafeicultura, Rio Paranaíba. Retrieved in 2019, October 10, from http://revistacafeicultura.com.br/?mat=34061

3 Gontijo J. (2016). Com três fábricas, Montes Claros vira polo de café em cápsula. Belo Horizonte: O Tempo. Retrieved in 2019, October 10, from https://www.otempo.com.br/capa/economia/com-tr%C3%AAs-f%C3%A1bricas-montes-claros-vira-polo-de-caf%C3%A9-em-c%C3%A1psula-1.1213345

4 Associação Brasileira da Indústria de Café – ABIC. (2019). Retrieved in 2019, October 10, from http://abic.com.br/estatisticas/pesquisas/pesquisa-tendencias-do-mercado-de-cafe/

5 Diário do Comércio. (2017). Nespresso investe na reciclagem de cápsulas. In: Revista Cafeicultura, Rio Paranaíba. Retrieved in 2019, October 10, from http://revistacafeicultura.com.br/?mat=65407

6 Brasil. Ministério do Meio Ambiente. (2019). Política Nacional de Resíduos Sólidos. Brasília: Ministério do Meio Ambiente. Retrieved in 2019, October 10, from www.mma.gov.br/pol%C3%ADtica-de-res%C3%ADduos-s%C3%B3lidos

7 Franchetti, S. M., & Marconato, J. C. (2003). A importância das propriedades físicas dos polímeros na reciclagem. Química Nova na Escola, 18, 42-45. Retrieved in 2019, October 10, from http://qnesc.sbq.org.br/online/qnesc18/A09.PDF

8 Portal Resíduos Sólidos. (2019). Retrieved in 2019, October 10, from http://www.portalresiduossolidos.com/reciclagem-de-plasticos-polimeros

9 Nestlé Nespresso S.A. (2018). Retrieved in 2018, November 26, from https://www.nespresso.com/positive/br/en#map-results

10 Dahlbo, H., Poliakova, V., Mylläri, V., Sahimaa, O., & Anderson, R. (2018). Recycling potential of post-consumer plastic packaging waste in Finland. Waste Management (New York, N.Y.), 71, 52-61. http://dx.doi.org/10.1016/j.wasman.2017.10.033. PMid:29097129.

11 Hamad, K., Kaseem, M., & Deri, F. (2013). Recycling of waste from polymer materials: an overview of the recent works. Polymer Degradation & Stability, 98(12), 2801-2812. http://dx.doi.org/10.1016/j.polymdegradstab.2013.09.025.

12 Jmal, H., Bahlouli, N., Wagner-Kocher, C., Leray, D., Ruch, F., Munsch, J. N., & Nardin, M. (2018). Influence of the grade on the variability of the mechanical properties of polypropylene waste. Waste Management (New York, N.Y.), 75, 160-173. http://dx.doi.org/10.1016/j.wasman.2018.02.006. PMid:29463419.

13 Zdiri, K., Elamri, A., Hamdaoui, M., Harzallah, O., Khenoussi, N., & Brendlé, J. (2018). Reinforcement of recycled PP polymers by nanoparticles incorporation. Green Chemistry Letters and Reviews, 11(3), 296-311. http://dx.doi.org/10.1080/17518253.2018.1491645.

14 Bogataj, V. Ž., Fajs, P., Peñalva, C., Omahen, M., Čop, M., & Henttonen, A. (2019). Utilization of recycled polypropylene, cellulose andnewsprint fibres for production of green composites. Detritus, 07, 36-43. http://dx.doi.org/10.31025/2611-4135/2019.13857.

15 Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management (New York, N.Y.), 69, 24-58. http://dx.doi.org/10.1016/j.wasman.2017.07.044. PMid:28823699.

16 Kozderka, M., Rose, B., Bahlouli, N., Kočí, V., & Caillaud, E. (2017). Recycled high impact polypropylene in the automotiveindustry - mechanical and environmental properties. International Journal on Interactive Design and Manufacturing, 11(3), 737-750. http://dx.doi.org/10.1007/s12008-016-0365-9.

17 Luna, C. B. B., Ferreira, E. S. B., Silva, L. J. M. D., Silva, W. A., Araújo, E. M., & Melo, J. B. C. A. (2019). Blends with technological potential of copolymer polypropylene with polypropylene from post-consumer industrial containers. Materials Research Express, 6(12), 125319. http://dx.doi.org/10.1088/2053-1591/ab56b2.

18 Lin-Vien, D., Colthup, N. B., Fateley, W. G., & Grasselli, J. G. (1991). The Handbook of infrared and raman characteristic frequencies of organic molecules. USA: Academic Press.

19 Favaro, S. L., Rubira, A. F., Muniz, E. C., & Radovanovic, E. (2007). Surface modification of HDPE, PP and PET films with KMnO4/HCl solutions. Polymer Degradation & Stability, 92(7), 1219-1226. http://dx.doi.org/10.1016/j.polymdegradstab.2007.04.005.

20 Sclavons, M., Laurent, M., Devaux, J., & Carlier, V. (2005). Maleic anhydride-grafted polypropylene: FTIR study of a model polymergrafted by ene-reaction. Polymer, 46(19), 8062-8067. http://dx.doi.org/10.1016/j.polymer.2005.06.115.

21 Massey, L. K. (2006). The effects of UV light and weather on plastics and elastomers. USA: William Andrew Inc.

22 Machado, G. (2002). Estudo da morfologia e cristalinidade em polipropileno isotático submetido a deformação uniaxial em temperatura ambiente (Tese de doutorado). Universidade Federal do Rio Grande do Sul, Porto Alegre.

23 Iijima, M., & Strobl, G. (2000). Isothermal crystallization and melting of isotactic polypropylene analyzed by time and temperature-dependence small-angle X-ray scattering experiments. Macromolecules, 33(14), 5204-5214. http://dx.doi.org/10.1021/ma000019m.

24 Li, X., Yang, H., & Li, Y-C. (2015). Characterization of thermal reaction of aluminum/copper (II) oxide/poly (tetrafluoroethene) nanocomposite by thermogravimetric analysis, differential scanning calorimetry, mass spectrometry and X-ray diffraction. Thermochimica Acta, 621, 68-73. http://dx.doi.org/10.1016/j.tca.2015.10.012.

25 Takemori, M. T. (1979). Towards an understanding of the heat distortion temperature of thermoplastics. Polymer Engineering and Science, 19(15), 1104-1109. http://dx.doi.org/10.1002/pen.760191507.

26 Luna, C. B. B., Silva, D. F., Araújo, E. M., Mélo, T. J. A., & Oliveira, A. D. (2017). Rheological, mechanical, thermomechanical and morphological behavior of polystyrene/shoes residue blends with different granulometry. Tecnologica em Metalurgia, Materiais e Mineração, 14(3), 219-226. http://dx.doi.org/10.4322/2176-1523.1111.

27 Maiti, P., Nam, P. H., Okamoto, M., Hasegawa, N., & Usuki, A. (2002). Influence of Crystallizationon Intercalation, Morphology and Mechanical Properties of Polypropylene/Clay Nanocomposites. Macromolecules, 35(6), 2042-2049. http://dx.doi.org/10.1021/ma010852z.

28 Salemane, M. G., & Luyt, A. S. (2006). Thermal and Mechanical Properties of Polypropylene-Wood Powder Composites. Journal of Applied Polymer Science, 100(5), 4173-4180. http://dx.doi.org/10.1002/app.23521.

29 Callister, W. D. J. (2002). Ciência e Engenharia de Materiais. Uma Introdução. Rio de Janeiro: LTC.
 

5f5248500e882570797dc2e2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections