Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Understanding the water uptake in F-161 glass-epoxy composites using the techniques of luminescence spectroscopy and FT-NIR

Sales, Rita; Thim, Gilmar; Brunelli, Deborah

Downloads: 0
Views: 660


This paper investigates the application of the luminescence spectroscopy technique in steady–state to study the moisture influence in glass fiber/epoxy prepreg and their laminates. The studies were monitored by intrinsic luminescence comparing the results with gravimetric analysis and near infrared with Fourier transform. Samples are cured and submitted to humidity controlled at 60 and 80 °C until 90 days. It is verified that the decrease in the maximum emission of the samples is directly related to the material moisture content. However, for very short periods, there is an increase in the relative intensity and blue shift of the emission band for all samples treated at 60 °C, which is related to an increase of the rigidity of the polymeric matrix. The results in this paper have a great significance because it brings a wide discussion on the interaction of water in epoxy composites materials.


F-161 laminates, FT-NIR, luminescence spectroscopy, water uptake.


1. Clark, G., Saunders, D. S., van Blaricum, T. J., & Richmond, M. (1990). Moisture absorption in graphite/ epoxy laminates. Composites Science and Technology, 39(4), 355-375. http://dx.doi.org/10.1016/0266-3538(90)90081-F.

2. Apicella, A., Tessieri, R., & Cataldis, C. (1984). Sorption modes of water in glassy epoxies. Journal of Membrane Science, 18, 211-225. http://dx.doi.org/10.1016/S0376-7388(00)85035-8.

3. Ellis, T. S., & Karasz, F. E. (1984). Interactions of epoxy resins with water: the depression of glass transition temperature. Polymer, 25(5), 664-669. http://dx.doi.org/10.1016/0032-3861(84)90034-X.

4. Jelinski, L. W., Dumais, J. J., Cholli, A. L., Ellis, T. S., & Karasz, F. E. (1985). Nature of the water-epoxy interaction. Macromolecules, 18(6), 1091-1095. http://dx.doi.org/10.1021/ma00148a008.

5. Woo, M., & Piggot, M. (1987). Water absorption of resins and composites: I. epoxy homopolymers and copolymers. Journal Composites Technology Research, 9(3), 101-107. http://dx.doi.org/10.1520/CTR10249J.

6. Adamson, M. J. (1980). Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials. Journal of Materials Science, 15(7), 1736-1745. http://dx.doi.org/10.1007/BF00550593.

7. Li, L., Yu, Y., Su, H., Zhan, G., Li, S., & Wu, P. (2010). The diffusion mechanism of water transport in amine-cured epoxy networks. Applied Spectroscopy, 64(4), 458-465. PMid:20412632. http://dx.doi.org/10.1366/000370210791114220.

8. Cotugno, S., Larobina, D., Mensitieri, G., Musto, P., & Ragosta, G. (2001). A novel spectroscopic approach to investigate transport processes in polymers: the case of water–epoxy system. Polymer, 42(15), 6431-6438. http://dx.doi.org/10.1016/S0032-3861(01)00096-9.

9. Roy, S., & Xu, W. (2001). Modeling of diffusion in the presence of damage in polymer matrix composites. International Journal of Solids and Structures, 38(1), 115-126. http://dx.doi.org/10.1016/S0020-7683(00)00006-8.

10. Choi, H. S., Ahn, K. J., Nam, J.-D., & Chun, H. J. (2001). Hygroscopic aspects of epoxy/carbon fiber composite laminates in aircraft environments. Composites. Part A, Applied Science and Manufacturing, 32(5), 709-720. http://dx.doi.org/10.1016/S1359-835X(00)00145-7.

11. Patel, S. R., & Case, S. W. (2000). Durability of a graphite/epoxy woven composite under combined hygrothermal conditions. International Journal of Fatigue, 22(9), 809-820. http://dx.doi.org/10.1016/S0142-1123(00)00041-4.

12. Zafar, A., Bertocco, F., Schjødt-Thomsen, J., & Rauhe, J. C. (2012). Investigation of the long term effects of moisture on carbon fibre and epoxy matrix composites. Composites Science and Technology, 72(6), 656-666. http://dx.doi.org/10.1016/j.compscitech.2012.01.010.

13. Asp, L. E. (1998). The effects of moisture and temperature on the interlaminar delamination toughness of a carbon/epoxy composite. Composites Science and Technology, 58(6), 67-977. http://dx.doi.org/10.1016/S0266-3538(97)00222-4.

14. Chateauminois, A., Vincent, L., Chabert, B., & Soulier, J. P. (1994). Study of the interfacial degradation of a glass epoxy composite during hygrothermal aging using water diffusion measurements and dynamicmechanical thermal-analysis. Polymer, 35(22), 4766-4779. http://dx.doi.org/10.1016/0032-3861(94)90730-7.

15. Majerus, M. S., Soong, D. S., & Prausnitz, J. M. (1984). Experimental measurements and monte-carlo simulation of water diffusion into epoxy matrices. Journal of Applied Polymer Science, 29(8), 2453-2466. http://dx.doi.org/10.1002/app.1984.070290803.

16. Li, Y., Miranda, J., & Sue, H.-J. (2001). Hygrothermal diffusion behavior in bismaleimide resin. Polymer, 42(18), 7791-7799. http://dx.doi.org/10.1016/S0032-3861(01)00241-5.

17. Dang, W., & Sung, N. H. (1994). In-situ cure monitoring of diamine cured epoxy by fiberoptic fluometry using extrinsic reactive fluorophore. Polymer Engineering and Science, 34(9), 707-715. http://dx.doi.org/10.1002/pen.760340903.

18. Sung, C. S. P., Pyun, E., & Sun, H. L. (1986). Characterization of epoxy cure by UV-visible and fluorescence spectroscopy: azo chromophoric labeling approach. Macromolecules, 19(12), 2922-2934. http://dx.doi.org/10.1021/ma00166a008.

19. Sung, C. S. P., & Sung, N. H. (1993). Fluorescence characterization of cure and water uptake in polymers and composites. Materials Science and Engineering A, 162(1-2), 241-247. http://dx.doi.org/10.1016/0921-5093(90)90049-9.

20. Pyun, E., & Sung, C. S. P. (1991). Network structure in diamine-cured tetrafunctional epoxy by UV-Visible and fluorescence spectroscopy. Macromolecules, 24(4), 855-861. http://dx.doi.org/10.1021/ma00004a007.

21. Paik, H. J., & Sung, N. H. (1994). Fiberoptic intrinsic fluorescence for in-situ cure monitoring of amine cured epoxy and composites. Polymer Engineering and Science, 34(12), 1025-1032. http://dx.doi.org/10.1002/pen.760341212.

22. American Society for Testing and Materials – ASTM. (2012). ASTM D5229/D229M-12. West Conshohocken: ASTM.

23. Soles, C. L., Chang, F. T., Gidley, D. W., & Yee, A. F. (2000). Contributions of the Nanovoid Structure to the Kinetics of Moisture Transport in Epoxy Resins. Journal of Polymer Science. Part B, Polymer Physics, 38(5), 776-791. http://dx.doi.org/10.1002/(SICI)1099-0488(20000301)38:5<776::AID-POLB15>3.0.CO;2-A.

24. Olmos, D., López-Morón, R., & González-Benito, J. (2006). The nature of the glass fibre surface and its effect in the water absorption of glass fibre/epoxy composites: the use of fluorescence to obtain information at the interface. Composites Science and Technology, 66(15), 2758-2768. http://dx.doi.org/10.1016/j.compscitech.2006.03.004.

25. Gonzalez-Benito, J., Bravo, J., Mikes, F., & Baselga, J. (2003). Fluorescence labels to monitor water absorption in epoxy resins. Polymer, 44(3), 653-659. http://dx.doi.org/10.1016/S0032-3861(02)00806-6.

26. Sales, R. C. M., Diniz, M. F., Dutra, R. C. L., Thim, G. P., & Dibbern-Brunelli, D. (2010). Thermal Curing of Glass-Epoxy Prepregs by Luminescence Spectroscopy. Journal of Applied Polymer Science, 17(2), 664-671. http://dx.doi.org/10.1002/app.31953.

27. Lakowicz, J. R. (1999). Principles of fluorescence spectroscopy (2nd ed.). New York: Kluwer Academic.

28. Soles, C. L., & Yee, A. F. (2000). Discussion of the Molecular Mechanisms of Moisture Transport in Epoxy Resins. Journal of Polymer Science. Part B, Polymer Physics, 38(5), 792-802. http://dx.doi.org/10.1002/(SICI)1099-0488(20000301)38:5<792::AID-POLB16>3.0.CO;2-H.

29. Soles, C. L., Chang, F. T., Bolan, B. A., Hristov, H. A., Gidley, D. W., & Yee, A. F. (1998). Contributions of the nanovoid structure to the moisture absorption properties of epoxy resins. Journal of Polymer Science. Part B, Polymer Physics, 36(17), 3035-3048. http://dx.doi.org/10.1002/(SICI)1099-0488(199812)36:17<3035::AID-POLB4>3.0.CO;2-Y.

30. Zhou, J., & Lucas, J. P. (1999). Hygrothermal effects of epoxy resin. Part I: the nature of water in epoxy. Polymer, 40(20), 5505-5512. http://dx.doi.org/10.1016/S0032-3861(98)00790-3.

31. Quirin, J. C., & Torkelson, J. M. (2003). Self-referencing fluorescence sensor for monitoring conversion of nonisothermal polymerization and nanoscale mixing of resin components. Polymer, 44(2), 423-432. http://dx.doi.org/10.1016/S0032-3861(02)00780-2.

32. Leezenberg, P. B., & Frank, C. W. (1995). Selective sorption and solvation in dansyl-labeled poly(dimethylsi1oxane) networks swollen in binary solvent mixtures. Macromolecules, 28(22), 7407-7415. http://dx.doi.org/10.1021/ma00126a019.

33. Sales, R. C. M., & Brunelli, D. D. (2005). Luminescence spectroscopy applied to a study of the curing process of diglycidyl-ether of bisphenol-A (DGEBA). Materials Research, 8(3), 299-304. http://dx.doi.org/10.1590/S1516-14392005000300013.

34. Poisson, N., Lachenal, G., & Sautereau, H. (2000). Near- and mid-infrared spectroscopy studies of an epoxy reactive system. Vibrational Spectroscopy, 12, 565-574. http://dx.doi.org/10.1016/0924-2031(96)00027-6.

35. Musto, P., Mascia, L., Ragosta, G., Scarinzi, G., & Villano, P. (2000). The transport of water in a tetrafunctional epoxy resin by near-infrared Fourier transform spectroscopy. Polymer, 41(2), 565-574. http://dx.doi.org/10.1016/S0032-3861(99)00210-4.

36. Chike, K. E., Myrick, M. L., Lyon, R. E., & Angel, S. M. (1993). Raman and near-infrared studies of an epoxy resin. Applied Spectroscopy, 47(10), 1631-1635. http://dx.doi.org/10.1366/0003702934334714.

37. Lachenal, G., Pierre, A., & Poisson, N. (1996). FT-NIR Spectroscopy: trends and application to the kinetic study of Epoxy/triamine system (Comparison with DSC and SEC Results). Micron, 27(5), 329-334. http://dx.doi.org/10.1016/S0968-4328(96)00022-4.

38. Wang, Q., Storm, B. K., & Houmoller, L. P. (2003). Study of the isothermal curing of an epoxy prepregs by near-infrared spectroscopy. Journal of Polymer Science, 87, 2295-2305. http://dx.doi.org/10.1002/app.11711.

39. Rigail-Cedeño, A., & Sung, C. S. P. (2005). Fluorescence and IR characterization of epoxy cured with aliphatic amines. Polymer, 46(22), 9378-9384. http://dx.doi.org/10.1016/j.polymer.2005.04.063.

40. González-Benito, J. (2003). The nature of the structural gradient in epoxy curing at a glass/fiber epoxy matrix interface using FT-IR imaging. Journal of Colloid and Interface Science, 267(2), 326-332. PMid:14583208. http://dx.doi.org/10.1016/S0021-9797(03)00550-2.

41. Hepburn, D. M., Kemp, I. J., & Cooper, J. M. (2000). Degradation of filled epoxy resin surfaces. Polymer Degradation and Stabilization, 70(2), 245-251. http://dx.doi.org/10.1016/S0141-3910(00)00120-8.

42. Lee, H., & Neville, K. (1967). Handbook of epoxy resin. New York: McGraw-Hill.

43. Shaw, S. E., Russo, T., Solomon, D. H., & Qiao, G. G. (2006). An alternative pathway for the hydrolysis of epoxy ester compounds. Polymer, 47(25), 8247-8252. http://dx.doi.org/10.1016/j.polymer.2006.10.004.

44. Li, L., Zhang, S. Y., Chen, Y. H., Liu, M. J., Ding, Y. F., Luo, X. W., Pu, Z., Zhou, W. F., & Li, S. (2005). Water transportation in epoxy resin. Chemistry of Materials, 17(4), 839-845. http://dx.doi.org/10.1021/cm048884z.

45. Jana, R. N., & Bhunia, H. (2008). Higrothermal degradation of the composites laminates from woven carbon SC-15 epoxy resin and woven glass/SC-15 epoxy resin. Polymer Composites, 29(6), 664-669. http://dx.doi.org/10.1002/pc.20417.

46. Zhao, C., & Whalen, D. L. (2006). Transition state effects in the acid-catalyzed hydrolysis of 5-methoxyacenaphthylene 1,2-oxide: implications for the mechanism of acid-catalyzed hydrolysis of cyclopenta[cd]pyrene 3,4-oxide. Chemical Research in Toxicology, 19(2), 217-222. PMid:16485897. http://dx.doi.org/10.1021/tx050281u.

5b7b14600e88252859896e52 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections