Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Study on mechanical & thermal properties of PCL blended graphene biocomposites

Kumar, Dinesh; Babu, Ganesh; Krishnan, Sai

Downloads: 0
Views: 32


Graphene is a new carbon based nonmaterial that attracts the technology and constitutes one of the great promises for nanotechnology applications in a near feature. It’s having versatile intrinsic mechanical, thermal and electrical properties.By Incorporation of small amount of graphene fillers into polymer matrix can create attractive bio composites with different morphological and functional properties. The development of biomaterials with special properties is a requirement in biomedical research, particularly in biomedical application. The aim of this work was to develop biocompatible, usable bio composites for biomedical applications using graphene as filler. Recent research evidenced that grapheme-polymer bio composites are promising materials with applications ranging from transportation, biomedical systems, sensors, electrodes for solar panels and EMI.Chemically converted graphene (CCG) solution were prepared through reduction of GO, and Polycaprolactone (PCl), a synthetic biodegradable and biocompatible aliphatic polyester also a suitable for developing biocomposites.


graphene; polymer biocomposites; polycaprolactone; biocompatible.


1 Williams, D. F. (1999). The Williams dictionary of biomaterials. USA: Liverpool University Press. 

2 Guo, B., Glavas, L., & Albertsson, A. C. (2013). Biodegradable and electrically conducting polymers for biomedical applications. Progress in Polymer Science38(9), 1263-1286. http://dx.doi.org/10.1016/j.progpolymsci.2013.06.003

3 Hull, D., & Clyne, T. W. (1996). An introduction to composite materials. USA: Cambridge University Press. http://dx.doi.org/10.1017/CBO9781139170130.

4 Nair, L. S., & Laurencin, C. T. (2006). Polymers as biomaterials for tissue engineering and controlled drug delivery. In K. Lee & D. Kaplan (Eds.), Tissue engineering i: scaffold systems for tissue engineering (pp. 47-90). New York: Springer-Verlag Berlin Heidelberg. http://dx.doi.org/10.1007/b137240

5 Barbucci, R. (2002). Integrated biomaterials science. USA: Springer. http://dx.doi.org/10.1007/b112196

6 Tian, H. Y., Tang, Z. H., Zhuang, X. L., Chen, X. S., & Jing, X. B. (2012). Biodegradable synthetic polymers: preparation, functionaliztion and biomedical application. Progress in Polymer Science37(2), 237-280. http://dx.doi.org/10.1016/j.progpolymsci.2011.06.004

7 Schuerch, C. (1972). The chemical synthesis and properties of polysaccharides of biomedical interestIn: Fortschritte der Hochpolymeren-Forschung. In G. Leone & R. Barbucci. Advances in polymer science (pp. 173-194). Berlin: Springer. http://dx.doi.org/10.1007/3-540-05838-9_12

8 Khan, F., & Ahmad, S. R. (2013). Polysaccharides and their derivatives for versatile tissue engineering application. Macromolecular Bioscience13(4), 395-421. http://dx.doi.org/10.1002/mabi.201200409. PMid:23512290. 

9 Li, Z., Leung, M., Hopper, R., Ellenbogen, R., & Zhang, M. (2010). Feeder – free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials31(3), 404-412. http://dx.doi.org/10.1016/j.biomaterials.2009.09.070. PMid:19819007. 

10 Lindblad, M. S., Sjöberg, J., Albertsson, A.-C., & Hartman, J. (2007). Hydrogels from polysaccharides for biomedical applications. In D. S. Argyropoulos. Materials, chemicals, and energy from forest biomass (pp. 153-167). Washington: American Chemical Society. http://dx.doi.org/10.1021/bk-2007-0954.ch010

11 Leone, G., & Barbucci, R. (2009). Polysaccharide based hydrogels for biomedical applications. In R. Obarbucci (Ed.), Hydrogels (pp. 25-41). Milan: Springer. 

12 Kontio, R., Ruuttila, P., Lindroos, L., Suuronen, R., Salo, A., Lindqvist, C., Virtanen, I., & Konttinen, Y. T. (2005). Biodegradable polydioxanone and poly(L/D) lactide implants: an experimental study on peri-implant tissue response. International Journal of Oral and Maxillofacial Surgery34(7), 766-776. http://dx.doi.org/10.1016/j.ijom.2005.04.027. PMid:15979853. 

13 Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science. Part B, Polymer Physics49(12), 832-864. http://dx.doi.org/10.1002/polb.22259. PMid:21769165. 

14 Sinha, V. R., Bansal, K., Kaushik, R., Kumria, R., & Trehan, A. (2004). Poly-ϵ-caprolactone microspheres and nanospheres: an overview. International Journal of Pharmaceutics278(1), 1-23. http://dx.doi.org/10.1016/j.ijpharm.2004.01.044. PMid:15158945. 

15 Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overveiw. Macromolecular Materials and Engineering, 276-277(1), 1-24. http://dx.doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W

16 Mani, R., Tang, J., & Bhattacharya, M. (1998). Synthesis and characterization of starchgraft-polycaprolactone as compatibilizer for starch/ polycaprolactone blends. Macromolecular Rapid Communications19(6), 283-286. http://dx.doi.org/10.1002/(SICI)1521-3927

17 Chiacchiarelli, L. M., Monsalve, L., Vázquez, A., Kenny, J. M., & Torre, L. (2014). A polycaprolactone – based compatobolozation treatment to improve dispersion and interphase structure of silica polyurethane composites. Polymer Engineering and Science54(8), 1817-1826. http://dx.doi.org/10.1002/pen.23723.

18 Chavalitpanya, K., & Phattanarudee, S. (2013). Poly(Lactic acid)/ Polycaprolactone blends compatibilized with block copolymer. Energy Procedia34, 542-548. http://dx.doi.org/10.1016/j.egypro.2013.06.783. [

19 Hull, D., & Clyne, T. W. (1996). An introduction to composite materials. Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9781139170130

20 Tjong, S. C. (2012). Polymer composites with carbonaceous nanofillers: properties and applications. USA: Wiley Publications. http://dx.doi.org/10.1002/9783527648726

21 Gaharwar, A. K., Sant, S., Hancock, M. J., & Hacking, S. A. (2013). Nanomaterials in tissue engineering: fabrication and applications. UK: Woodhead Publishing. http://dx.doi.org/10.1533/9780857097231

22 Neto, A. C., Guinea, F., & Peres, N. M. R. (2006). Drawing conclusions from graphene. Physics World19(11), 33-37. http://dx.doi.org/10.1088/2058-7058/19/11/34. [ Links ]

23 Kasuga, T., Ota, Y., Nogami, M., & Abe, Y. (2000). Preparation and mechanical properties of polulactic acid composites containing hydroxyapatite fibers. Biomaterials22(1), 19-23. http://dx.doi.org/10.1016/S0142-9612(00)00091-0. PMid:11085379. [ Links ]

24 Hong, Z., Zhang, P., He, C., Qiu, X., Liu, A., Chen, L., Chen, X., & Jing, X. (2005). Nano composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials26(32), 6296-6304. http://dx.doi.org/10.1016/j.biomaterials.2005.04.018. PMid:15913758. 

25 Lee, K. W., Wang, S. F., Yaszemski, M. J., & Lu, L. C. (2008). Physical Properties and cellular responses to crosslinkablepoly(propylene fumarate)/hydroxyapatite nanocomposites. Biomaterials29(19), 2839-2848. http://dx.doi.org/10.1016/j.biomaterials.2008.03.030. PMid:18403013. 

26 Ramalingam, M., Vallittu, P., Ripamonti, U., & Li, W. J. (2012). Tissue engineering and regenerative medicine: a nano approach. Florida: CRC Press. http://dx.doi.org/10.1201/b13049

27 Li, X., Wang, L., Fan, Y., Feng, Q., Cui, F.-Z., & Watari, F. (2013). Nanostructured scaffolds for bone tissue engineering. Journal of Biomedical Materials Research. Part A, 101A(8), 2424-2435. http://dx.doi.org/10.1002/jbm.a.34539. PMid:23377988. 

28 Ray, S. S., Yamada, K., Okamoto, M., & Ueda, K. (2002). Polylactide-layered silicate nanocomposite: a novel biodegradable material. Nano Letters2(10), 1093-1096. http://dx.doi.org/10.1021/nl0202152

29 Krikorian, V., & Pochan, D. J. (2003). Poly(L-Lactic acid)/layered silicate nanocomposite: fabrication, characterization, and properties. Chemistry of Materials15(22), 4317-4324. http://dx.doi.org/10.1021/cm034369+

30 Lee, J. H., Park, T. G., Park, H. S., Lee, D. S., Lee, Y. K., Yoon, S. C., & Nam, J.-D. (2003). Thermal and mechanical characteristics of poly(L-Lactic acid) nanocomposite scaffold. Biomaterials24(16), 2773-2778. http://dx.doi.org/10.1016/S0142-9612(03)00080-2. PMid:12711524. 

31 Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: past, present and future. Progress in Materials Science56(8), 1178-1271. http://dx.doi.org/10.1016/j.pmatsci.2011.03.003.

32 Green, A. A., & Hersam, M. C. (2009). Solution phase production of graphene with controlled thickness via density differentiation. Nano Letters9(12), 4031-4036. http://dx.doi.org/10.1021/nl902200b. PMid:19780528. 

33 Wintterlin, J., & Bocquet, M. L. (2009). Graphene on metal surfaces. Surface Science603(10-12), 1841-1852. http://dx.doi.org/10.1016/j.susc.2008.08.037

34 Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology4(4), 217-224. http://dx.doi.org/10.1038/nnano.2009.58. PMid:19350030. 

35 Wang, R. J., Wang, X. H., Chen, S. J., & Jiang, G. H. (2012). In situ polymerization approach to poly(e-caprolactone)-Graphene oxide composites. DesignedMonomersandPolymers15(3), 303-310. http://dx.doi.org/10.1163/156855511X615696


5e8d54330e8825ae3ac9ee3c polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections