Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.05218
Polímeros: Ciência e Tecnologia
Original Article

Extraction and characterization of cellulose microfibers from Retama raetam stems

Khenblouche, Abdelkader; Bechki, Djamel; Gouamid, Messaoud; Charradi, Khaled; Segni, Ladjel; Hadjadj, Mohamed; Boughali, Slimane

Downloads: 0
Views: 134

Abstract

Abstract: Cellulose is the most abundant renewable resource in nature, it has various industrial applications due to its promising properties. Retama raetam is a wild plant belonging to the Fabaceae family, largely abundant in arid area which makes it a good candidate for industrial utilization. In the present study, highly crystalline cellulose microfibers (77.8% CrI) were extracted from Retama Raetam stems as a novel renewable source. The samples underwent a dewaxing process, then the microfibers were extracted using 7 wt% sodium hydroxide followed by a bleaching treatment. The extracted cellulose microfibers were characterized by Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray Diffraction and thermo-gravimetric analysis.

Keywords

cellulose; microfibers; Retama raetam; extraction; characterization

References

1 Baskaran, P., Kathiresan, M., Senthamaraikannan, P., & Saravanakumar, S. (2018). Characterization of new natural cellulosic fiber from the bark of dichrostachys cinerea. Journal of Natural Fibers15(1), 62-68. http://dx.doi.org/10.1080/15440478.2017.1304314. 

2 Mohammed, L., Ansari, M. N. M., Pua, G., Jawaid, M., & Islam, M. S. (2015). A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science15. http://dx.doi.org/10.1155/2015/243947. 

3 Sheltami, R. M., Abdullah, I., Ahmad, I., Dufresne, A., & Kargarzadeh, H. (2012). Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius ). Carbohydrate Polymers88(2), 772-779. http://dx.doi.org/10.1016/j.carbpol.2012.01.062.

4 Zain, N. F. M., Yusop, S. M., & Ahmad, I. (2014). Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) albedo. Journal of Nutrition & Food Sciences5(1), 334. http://dx.doi.org/10.4172/2155-9600.1000334. 

5 Zhao, L., Pang, Q., Xie, J., Pei, J., Wang, F., & Fan, S. (2013). Enzymatic properties of Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to Clostridium cellulovorans cellulose binding domain and its application in hydrolysis of microcrystalline cellulose. BMC Biotechnology13(1), 101. http://dx.doi.org/10.1186/1472-6750-13-101. PMid:24228818. 

6 Braconnot, H. (1819). Sur la conversion du corps ligneux en gomme, en sucre, et en un acide d’une nature particulière, par le moyen de l’acide sulfurique; conversion de la même substance ligneuse en ulmine par la potasse. Annales de Chimie et de Physique12, 172-195. 

7 Payen, A. (1838). Mémoire sur la composition du tissu propre des plantes et du ligneux. The C++ Report7, 1052-1056. 

8 Naduparambath, S., Jinitha, T., Shaniba, V., Sreejith, M., Balan, A. K., & Purushothaman, E. (2018). Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydrate Polymers180, 13-20. http://dx.doi.org/10.1016/j.carbpol.2017.09.088. PMid:29103489. 

9 Vestena, M., Gross, I. P., Muller, C. M. O., & Pires, A. T. N. (2016). Isolation of whiskers from natural sources and their dispersed in a non-aqueous medium. Polímeros , 26(4), 327-335. http://dx.doi.org/10.1590/0104-1428.2367. 

10 Penjumras, P., Rahman, R. B. A., Talib, R. A., & Abdan, K. (2014). Extraction and characterization of cellulose from durian rind. Agriculture and Agricultural Science Procedia , 2, 237-243. http://dx.doi.org/10.1016/j.aaspro.2014.11.034. 

11 Li, M., Wang, L., Li, D., Cheng, Y.-L., & Adhikari, B. (2014). Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydrate Polymers , 102, 136-143. http://dx.doi.org/10.1016/j.carbpol.2013.11.021. PMid:24507265. 

12 Reddy, N., & Yang, Y. (2009). Extraction and characterization of natural cellulose fibers from common milkweed stems. Polymer Engineering and Science49(11), 2212-2217. http://dx.doi.org/10.1002/pen.21469. 

13 Reddy, N., & Yang, Y. (2009). Properties of natural cellulose fibers from hop stems. Carbohydrate Polymers77(4), 898-902. http://dx.doi.org/10.1016/j.carbpol.2009.03.013. 

14 Johar, N., Ahmad, I., & Dufresne, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products , 37(1), 93-99. http://dx.doi.org/10.1016/j.indcrop.2011.12.016. 

15 Indran, S., Edwin Raj, R., & Sreenivasan, V. S.. (2014). Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydrate Polymers , 110, 423-429. http://dx.doi.org/10.1016/j.carbpol.2014.04.051. PMid:24906775. 

16 Kacem, I., Majdoub, H., & Roudesli, S. (2008). Physicochemical properties of pectin from retama raetam obtained using sequential extraction. Journal of Applied Sciences , 8(9), 1713-1719. http://dx.doi.org/10.3923/jas.2008.1713.1719. 

17 Bokhari-Taieb Brahimi, H., Faugeron, C., Hachem, K., Kaid-Harche, M., & Gloaguen, V. (2015). Investigation of parietal polysaccharides from Retama raetam roots. African Journal of Biotechnology14(29), 2327-2334. http://dx.doi.org/10.5897/AJB2015.14754. 

18 Mechergui, K., Mahmoudi, H., Khouja, M. L., & Jaouadi, W. (2017). Factors influencing seed germination of the pastoral plant Retama raetam subsp. bovei (Fabaceae): interactive effects of fruit morphology, salinity, and osmotic stress. Biologija , 63(2), 134-151. http://dx.doi.org/10.6001/biologija.v63i2.3525. 

19 Segal, L., Creely, J., Martin, A. Jr, & Conrad, C. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal29(10), 786-794. http://dx.doi.org/10.1177/004051755902901003. 

20 Kale, R. D., Bansal, P. S., & Gorade, V. G. (2018). Extraction of microcrystalline cellulose from cotton sliver and its comparison with commercial microcrystalline cellulose. Journal of Polymers and the Environment26(1), 355-364. http://dx.doi.org/10.1007/s10924-017-0936-2. 

21 Sun, X.-F., Sun, R.-C., Su, Y., & Sun, J.-X. (2004). Comparative study of crude and purified cellulose from wheat straw. Journal of Agricultural and Food Chemistry , 52(4), 839-847. http://dx.doi.org/10.1021/jf0349230. PMid:14969539. 

22 Uma Maheswari, C., Obi Reddy, K., Muzenda, E., Guduri, B. R., & Varada Rajulu, A. (2012). Extraction and characterization of cellulose microfibrils from agricultural residue – Cocos nucifera LBiomass and Bioenergy46, 555-563. http://dx.doi.org/10.1016/j.biombioe.2012.06.039. 

23 Jonjankiat, S., Wittaya, T., & Sridach, W. (2011). Improvement of poly (vinyl alcohol) adhesives with cellulose microfibre from sugarcane bagasse. Iranian Polymer Journal , 20(4), 305-317. 

24 Reddy, K. O., Zhang, J., Zhang, J., & Rajulu, A. V. (2014). Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid. Carbohydrate Polymers114, 537-545. http://dx.doi.org/10.1016/j.carbpol.2014.08.054. PMid:25263924. 

25 Alemdar, A., & Sain, M. (2008). Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresource Technology , 99(6), 1664-1671. http://dx.doi.org/10.1016/j.biortech.2007.04.029. PMid:17566731. 

26 Morán, J. I., Alvarez, V. A., Cyras, V. P., & Vázquez, A. (2008). Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose , 15(1), 149-159. http://dx.doi.org/10.1007/s10570-007-9145-9. 

27 Sonia, A., & Priya Dasan, K. (2013). Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffaCarbohydrate Polymers92(1), 668-674. http://dx.doi.org/10.1016/j.carbpol.2012.09.015. PMid:23218352. 

28 Reddy, K. O., Maheswari, C. U., Dhlamini, M. S., & Kommula, V. P. (2016). Exploration on the characteristics of cellulose microfibers from Palmyra palm fruits. International Journal of Polymer Analysis and Characterization21(4), 286-295. http://dx.doi.org/10.1080/1023666X.2016.1147799. 

29 Reddy, K. O., Maheswari, C. U., Dhlamini, M. S., Mothudi, B. M., Kommula, V. P., Zhang, J., Zhang, J., & Rajulu, A. V. (2018). Extraction and characterization of cellulose single fibers from native african napier grass. Carbohydrate Polymers188, 85-91. http://dx.doi.org/10.1016/j.carbpol.2018.01.110. PMid:29525176. 

30 Fan, M., Dai, D., & Huang, B. (2012). Fourier transform infrared spectroscopy for natural fibres. In S. M. Salih (Ed.), Fourier transform-materials analysis (pp. 45-68). Rijeka: InTech. http://dx.doi.org/10.5772/35482. 

31 Maryana, R., Ma’rifatun, D., Wheni, A., Satriyo, K., & Rizal, W. A. (2014). Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia , 47, 250-254. http://dx.doi.org/10.1016/j.egypro.2014.01.221. 

32 Oh, S. Y., Yoo, D. I., Shin, Y., Kim, H. C., Kim, H. Y., Chung, Y. S., Park, W. H., & Youk, J. H. (2005). Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research340(15), 2376-2391. http://dx.doi.org/10.1016/j.carres.2005.08.007. PMid:16153620. 

33 Sun, J. X., Sun, X. F., Zhao, H., & Sun, R. C. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation & Stability , 84(2), 331-339. http://dx.doi.org/10.1016/j.polymdegradstab.2004.02.008. 

34 Gao, X., Chen, K.-L., Zhang, H., Peng, L.-C., & Liu, Q.-X. (2014). Isolation and characterization of cellulose obtained from bagasse pith by oxygen-containing agents. BioResources , 9(3), 4094-4107. http://dx.doi.org/10.15376/biores.9.3.4094-4107. 

35 Sain, M., & Panthapulakkal, S. (2006). Bioprocess preparation of wheat straw fibers and their characterization. Industrial Crops and Products23(1), 1-8. http://dx.doi.org/10.1016/j.indcrop.2005.01.006. 

36 Kondo, T., & Sawatari, C. (1996). A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer37(3), 393-399. http://dx.doi.org/10.1016/0032-3861(96)82908-9. 

37 Kondo, T. (1997). The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose4(4), 281-292. http://dx.doi.org/10.1023/A:1018448109214. 

38 Flauzino, W. P., No., Silvério, H. A., Dantas, N. O., & Pasquini, D. (2013). Extraction and characterization of cellulose nanocrystals from agro-industrial residue-soy hulls. Industrial Crops and Products42, 480-488. http://dx.doi.org/10.1016/j.indcrop.2012.06.041. 

39 French, A. D. (2014). Idealized powder diffraction patterns for cellulose polymorphs. Cellulose21(2), 885-896. http://dx.doi.org/10.1007/s10570-013-0030-4. 

40 Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels3(1), 10. http://dx.doi.org/10.1186/1754-6834-3-10. PMid:20497524. 

41 Wang, Y., Zhao, Y., & Deng, Y. (2008). Effect of enzymatic treatment on cotton fiber dissolution in NaOH/urea solution at cold temperature. Carbohydrate Polymers72(1), 178-184. http://dx.doi.org/10.1016/j.carbpol.2007.08.003. 

42 Rhim, J.-W., Reddy, J. P., & Luo, X. (2015). Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose22(1), 407-420. http://dx.doi.org/10.1007/s10570-014-0517-7. 

43 Abe, K., & Yano, H. (2009). Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose16(6), 1017-1023. http://dx.doi.org/10.1007/s10570-009-9334-9. 

44 Chatterjee, A., Kiran Kumar, G., Dharma Sagar, B., Sravanti, K., Ramakrishna, K., & Rajesh, C. (2018). Pure and copper doped cellulose microfibers-a case study. Materials Research Express5(10), 105302. http://dx.doi.org/10.1088/2053-1591/aad9d4. 

45 Puttaswamy, M., Srinikethan, G., & Shetty, K. V. (2017). Biocomposite composed of PVA reinforced with cellulose microfibers isolated from biofuel industrial dissipate: Jatropha Curcus L. seed shell. Journal of Environmental Chemical Engineering , 5(2), 1990-1997. http://dx.doi.org/10.1016/j.jece.2017.04.004. 

46 C S, J. C., George, N., & Narayanankutty, S. K. (2016). Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydrate Polymers , 142, 158-166. http://dx.doi.org/10.1016/j.carbpol.2016.01.015. PMid:26917386. 

47 Kasiri, N., & Fathi, M. (2018). Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. International Journal of Biological Macromolecules106, 1023-1031. http://dx.doi.org/10.1016/j.ijbiomac.2017.08.112. PMid:28842201. 

48 Nabili, A., Fattoum, A., Brochier-Salon, M.-C., Bras, J., & Elaloui, E. (2017). Synthesis of cellulose triacetate-I from microfibrillated date seeds cellulose (Phoenix dactylifera L.). Iranian Polymer Journal , 26(2), 137-147. http://dx.doi.org/10.1007/s13726-017-0505-5. 

49 Chen, W., Yu, H., Liu, Y., Hai, Y., Zhang, M., & Chen, P. (2011). Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose18(2), 433-442. http://dx.doi.org/10.1007/s10570-011-9497-z. 

50 Adel, A. M., Abd El-Wahab, Z. H., Ibrahim, A. A., & Al-Shemy, M. T. (2011). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: physicochemical properties. Carbohydrate Polymers83(2), 676-687. http://dx.doi.org/10.1016/j.carbpol.2010.08.039. 

51 Reddy, J. P., & Rhim, J.-W. (2018). Extraction and characterization of cellulose microfibers from agricultural wastes of onion and garlic. Journal of Natural Fibers , 15(4), 465-473. http://dx.doi.org/10.1080/15440478.2014.945227. 

52 Das, K., Ray, D., Bandyopadhyay, N. R., & Sengupta, S. (2010). Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. Journal of Polymers and the Environment , 18(3), 355-363. http://dx.doi.org/10.1007/s10924-010-0167-2. 

53 Azubuike, C. P., & Okhamafe, A. O. (2012). Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. International Journal of Recycling of Organic Waste in Agriculture1(1), 9. http://dx.doi.org/10.1186/2251-7715-1-9. 

54 Das, K., Ray, D., Bandyopadhyay, N. R., Ghosh, T., Mohanty, A. K., & Misra, M. (2009). A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose , 16(5), 783-793. http://dx.doi.org/10.1007/s10570-009-9280-6.

5cb77f710e88255d14ce6ba6 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections