Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.04919
Polímeros: Ciência e Tecnologia
Original Article

Effects of weathering on mechanical and morphological properties cork filled green polyethylene eco-composites

Gabriela Celso Melo Soares de Vasconcelos; Laura Hecker de Carvalho; Renata Barbosa; Rita de Cássia de Lima Idalino; Tatianny Soares Alves

Downloads: 0
Views: 605

Abstract

This study aims to evaluate the effects of natural weathering in the city of Teresina, State of Piauí, Brazil, on the morphology and mechanical properties of eco-composites based on high-density green polyethylene, powdered cork and compatibilizer processed in a twin-screw extruder and injection molded. The analyses revealed that although weathering induced surface bleaching of eco-composites and cracking, these effects were not intense in the compatibilized samples. The tensile properties of the investigated materials were affected by abiotic degradation, which led to a reduction of the tensile strength and elastic deformation of the eco-composites, however, the incorporation of PEgMA was fundamental for the maintenance of mechanical performance after natural aging. In general, the results obtained were satisfactory for external applications of the compatibilized eco-composite with 15% cork in the proposed weathering range, which indicates its possible use in temporary constructions.

 

Keywords

composites, compatibilizer, extrusion, colorimetry, natural aging

References

1 Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e170078. http://dx.doi.org/10.1126/sciadv.1700782. PMid:28776036.

2 Halliwell, S. M. (2002). Polymers in building and construction. United Kingdom: Rapra Technology Limited.

3 Bajwa, D. S., Bajwa, S. G., & Holt, G. A. (2015). Impact of biofibers and coupling agents on the weathering characteristics of composites. Polymer Degradation and Stability Journal, 120, 212-219. http://dx.doi.org/10.1016/j.polymdegradstab.2015.06.015.

4 Fernandes, E. M., Mano, J. F., & Reis, R. L. (2013). Hybrid cork-polymer composites containing sisal fiber: Morphology, the effect of the fiber treatment on the mechanical properties and tensile failure prediction. Composite Structures, 105, 153-162. http://dx.doi.org/10.1016/j.compstruct.2013.05.012.

5 Feist, W. C., & Hon, D. N.-S. (1984). Chemistry of Weathering and Protection. In R. Rowell. The chemistry of solid wood (pp. 401-451). Washington: American Chemical Society. http://dx.doi.org/10.1021/ba-1984-0207.ch011.

6 Lundin, T., Falk, R. H., & Felton, C. (2001). Accelerated weathering of natural fiber thermoplastic composites: effects of ultraviolet exposure on bending strength and stiffness. In Sixth International Conference on Woodfiber-Plastic Composites (p. 8793). Wisconsin: Forest Products Society.

7 Matuana, L. M., Jin, S., & Stark, N. M. (2011). Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer. Polymer Degradation & Stability, 96(1), 97-106. http://dx.doi.org/10.1016/j.polymdegradstab.2010.10.003.

8 Fabiyi, J. S., McDonald, A. G., Wolcott, M. P., & Griffiths, P. R. (2008). Wood plastic composites weathering: visual appearance and chemical changes. Polymer Degradation and Stability Journal, 93(8), 1405-1414. http://dx.doi.org/10.1016/j.polymdegradstab.2008.05.024.

9 Ratanawilai, T., & Taneerat, K. (2018). Alternative polymeric matrices for wood-plastic composites: effects on mechanical properties and resistance to natural weathering. Construction & Building Materials, 172, 349-357. http://dx.doi.org/10.1016/j.conbuildmat.2018.03.266.

10 Stark, N. M., & Matuana, L. M. (2006). Influence of photostabilizers on wood flour–HDPE composites exposed to xenon-arc radiation with and without water spray. Polymer Degradation & Stability, 91(12), 3048-3056. http://dx.doi.org/10.1016/j.polymdegradstab.2006.08.003.

11 Badji, C., Soccalingame, L., Garay, H., Bergeret, A., & Bénézet, J. C. (2017). Influence of weathering on visual and surface aspect of wood plastic composites: correlation approach with mechanical properties and microstructure. Polymer Degradation and Stability Journal, 137, 162-172. http://dx.doi.org/10.1016/j.polymdegradstab.2017.01.010.

12 Fernandes, E. M., Aroso, I. M., Mano, J. F., Covas, J. A., & Reis, R. L. (2014). Functionalized cork-polymer composites (CPC) by reactive extrusion using suberin and lignin from cork as coupling agents. Composites. Part B, Engineering, 67, 371-380. http://dx.doi.org/10.1016/j.compositesb.2014.07.028.

13 Fernandes, E. M., Correlo, V. M., Chagas, J. A. M., Mano, J. F., & Reis, R. L. (2011). Properties of new cork–polymer composites: advantages and drawbacks as compared with commercially available fibreboard materials. Composite Structures, 93, 3120-3129. http://dx.doi.org/10.1016/j.compstruct.2011.06.020.

14 Gil, L. (2012). Cortiça. In M. C. Gonçalves, & F. Margarido (Eds.), Ciência e engenharia de materiais de construção (pp. 663-715). Lisboa: IST Press.

15 Pereira, H., Emília Rosa, M., & Fortes, M. A. (1987). The cellular structure of cork from Quercus Suber L. IAWA Journal, 8(3), 213-218. http://dx.doi.org/10.1163/22941932-90001048.

16 Fernandes, E. M., Correlo, V. M., Chagas, J. A. M., Mano, J. F., & Reis, R. L. (2010). Cork based composites using polyolefin’s as matrix: morphology and mechanical performance. Composites Science and Technology, 70(16), 2310-2318. http://dx.doi.org/10.1016/j.compscitech.2010.09.010.

17 Fernandes, E. M., Correlo, V. M., Mano, J. F., & Reis, R. L. (2014). Polypropylene-based cork-polymer composites: processing parameters and properties. Composites. Part B, Engineering, 66, 210-223. http://dx.doi.org/10.1016/j.compositesb.2014.05.019.

18 Silva, S. P., Sabino, M. A., Fernandes, E. M., Correlo, V. M., Boesel, L. F., & Reis, R. L. (2005). Cork: properties, capabilities, and applications. International Materials Reviews, 50(6), 345-365. http://dx.doi.org/10.1179/174328005X41168.

19 Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. http://dx.doi.org/10.1016/j.matdes.2014.12.027.

20 Bledzki, A. K., & Gassan, J. (1996). Composites Reinforced with Cellulose Based Fibers. Progress in Polymer Science, 24(2), 221-274. http://dx.doi.org/10.1016/S0079-6700(98)00018-5.

21 Fernandes, E. M., Correlo, V. M., Mano, J. F., & Reis, R. L. (2013). Novel cork-polymer composites reinforced with short natural coconut fibers: effect of fiber loading and coupling agent addition. Composites Science and Technology, 78, 56-62. http://dx.doi.org/10.1016/j.compscitech.2013.01.021.

22 Andrady, A. L., Hamid, S. H., Hu, X., & Torikai, A. (1998). Effects of increased solar ultraviolet radiation on materials. Journal of Photochemistry and Photobiology. B, Biology, 46(1-3), 96-103. http://dx.doi.org/10.1016/S1011-1344(98)00188-2. PMid:9894353.

23 Valadez, A., & Veleva, L. (2004). Mineral filler influence on the photo-oxidation mechanism degradation of high-density polyethylene. Part II: natural exposure test. Polymer Degradation & Stability, 83(1), 139-148. http://dx.doi.org/10.1016/S0141-3910(03)00246-5.

24 Yang, R., Yu, J., Liu, Y., & Wang, K. (2005). Effects of inorganic fillers on the natural photo-oxidation of high-density polyethylene. Polymer Degradation & Stability, 88(2), 333-340. http://dx.doi.org/10.1016/j.polymdegradstab.2004.11.011.

25 Jacques, L. F. E. (2000). Accelerated and outdoor/natural exposure testing of coatings. Progress in Polymer Science, 25(9), 1337-1362. http://dx.doi.org/10.1016/S0079-6700(00)00030-7.

26 Stark, N. (2006). Effect of weathering cycle and manufacturing method on performance of wood flour and high-density polyethylene composites. Journal of Applied Polymer Science, 100(4), 3131-3140. http://dx.doi.org/10.1002/app.23035.

27 Stark, N. M., Matuana, L. M., & Clemons, C. M. (2004). Effect of processing method on surface and weathering characteristics of wood-flour/HDPE composites. Journal of Applied Polymer Science, 93(3), 1021-1030. http://dx.doi.org/10.1002/app.20529.

28 Pandey, P., Bajwa, S. G., Bajwa, D. S. & Englund, K. (2017). Performance of UV weathered HDPE composites containing hull fiber from DDGS and corn grain. Industrial Crops & Products journal, 107, 409-419. http://dx.doi.org/10.1016/j.indcrop.2017.06.050.

29 Pandey, K. (2005). Study of the effect of photo-irradiation on the surface chemistry of wood. Polymer Degradation & Stability, 90(1), 9-20. http://dx.doi.org/10.1016/j.polymdegradstab.2005.02.009.

30 Grum, J. (2008). Book Review: Plastics additives handbook, 5th Edition by H. Zweifel. International Journal of Microstructure and Materials Properties, 3(2-3), 451. http://dx.doi.org/10.1504/ijmmp.2008.018747.

31 Yakimets, I., Lai, D., & Guigon, M. (2004). Effect of photo-oxidation cracks on behavior of thick polypropylene samples. Polymer Degradation & Stability, 86(1), 59-67. http://dx.doi.org/10.1016/j.polymdegradstab.2004.01.013.

32 Ndiaye, D., Fanton, E., Morlat-Therias, S., Vidal, L., Tidjani, A., & Gardette, J.-L. (2008). The durability of wood polymer composites: Part 1. Influence of wood on the photochemical properties. Composites Science and Technology, 68(13), 2779-2784. http://dx.doi.org/10.1016/j.compscitech.2008.06.014.

33 Rabello, M. S., & White, J. R. (1997). Crystallization and melting behavior of photodegraded polypropylene-I. Chemi-crystallization. Polymer, 38(26), 6379-6387. http://dx.doi.org/10.1016/S0032-3861(97)00213-9.

34 Craig, I. H., & White, J. R. (2005). Crystallization and chemi-crystallization of recycled photodegraded polyethylenes. Polymer Engineering and Science, 45(4), 588-595. http://dx.doi.org/10.1002/pen.20314.

35 Bledzki, A. K., Reihmane, S., & Gassan, J. (1998). Thermoplastics Reinforced with Wood Fillers: A Literature Review. Polymer-Plastics Technology and Engineering, 37(4), 451-468. http://dx.doi.org/10.1080/03602559808001373.

36 Brites, F., Malça, C., Gaspar, F., Horta, J. F., Franco, M. C., Biscaia, S., & Mateus, A. (2017). Cork plastic composite optimization for 3D Printing Applications. Procedia Manufacturing, 12, 156-165. http://dx.doi.org/10.1016/j.promfg.2017.08.020.

37 Visakh, P., & Martinez Morlanes, M. (2015). Polyethylene-Based Blends, Composites, and Nanocomposites: State-of-the-Art, New Challenges, and Opportunities. In P. M. Visakh, M. J. Martínez Morlanes, Polyethylene Based Blends, Composites, and Nanocomposites (pp. 1-19). http://dx.doi.org/10.1002/9781118831328.ch1

38 Jakubowicz, I. (2003). Evaluation of degradability of biodegradable polyethylene (PE). Polymer Degradation & Stability, 80(1), 39-43. http://dx.doi.org/10.1016/S0141-3910(02)00380-4.

39 Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., & Nava-Saucedo, J. E. (2008). Polymer biodegradation: Mechanisms and estimation techniques - A review. Chemosphere, 73(4), 429-442. http://dx.doi.org/10.1016/j.chemosphere.2008.06.064. PMid:18723204.

40 Fayolle, B., Richaud, E., Verdu, J., & Farcas, F. (2008). Embrittlement of polypropylene fiber during thermal oxidation. Journal of Materials Science, 43(3), 1026-1032. http://dx.doi.org/10.1007/s10853-007-2242-1.

41 Essabir, H., Hilali, E., Elgharad, A., El Minor, H., Imad, A., Elamraoui, A., & Al Gaoudi, O. (2013). Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles. Materials & Design, 49, 442-448. http://dx.doi.org/10.1016/j.matdes.2013.01.025.

42 Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M. O., Arrakhiz, F. Z., Qaiss, A., & Bouhfid, R. (2013). Bio-composites based on polypropylene reinforced with Almond Shell particles: mechanical and thermal properties. Materials & Design, 51, 225-230. http://dx.doi.org/10.1016/j.matdes.2013.04.031.

43 Essabir, H., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qais, A. E. K. (2016). Biocomposites based on Argan nutshell and a polymer matrix: effect of filler content and coupling agent. Carbohydrate Polymers, 143, 70-83. http://dx.doi.org/10.1016/j.carbpol.2016.02.002. PMid:27083345.
 

5f524ce30e88257c027dc2e2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections