Mechanical characterization of HDPE reinforced with cellulose from rice husk biomass
Bosenbecker, Mariane Weirich; Cholant, Gabriel Monteiro; Silva, Gabriela Escobar Hochmuller da; Paniz, Oscar Giordani; Carreño, Neftali Lenin Villarreal; Marini, Juliano; Oliveira, Amanda Dantas de
Abstract
Keywords
References
1 Ligowski, E., Santos, B. C., & Fujiwara, S. T. (2015). Materiais compósitos a base de fibras da cana-de-açúcar e polímeros reciclados obtidos através da técnica de extrusão TT - Composite materials based on fibers from sugar cane and recycled polymers obtained by extrusion technique. Polímeros: Ciência e Tecnologia, 25(1), 70-75. http://dx.doi.org/10.1590/0104-1428.1605.
2 Yang, H. S., Kim, H. J., Park, H. J., Lee, B. J., & Hwang, T. S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin bio-composites. Composite Structures, 72(4), 429-437. http://dx.doi.org/10.1016/j.compstruct.2005.01.013.
3 Food and Agriculture Organization of the United Nations – FAO. (2018). Seguimiento del mercado del arroz de la FAO (Informe FAO de actualización de precios del arroz, Vol. 21, No. 1, 10 p.). Rome: FAO. Retrieved in 2019, June 22, from http://www.fao.org/3/I9243ES/i9243es.pdf [
4 Santos, P., & Costa, A. C. S. (2013). X-ray diffraction and thermal analysis of kaolins particle size fractions. Semina. Ciências Exatas e Tecnológicas, 34(1), 9-22. http://dx.doi.org/10.5433/1679-0375.2013v34n1p9.
5 Chandrasekhar, S., Satyanarayana, K. G., Pramada, P. N., Raghavan, P., & Gupta, T. N. (2003). Processing, properties and applications of reactive silica from rice husk - an overview. Journal of Materials Science, 38(15), 3159-3168. http://dx.doi.org/10.1023/A:1025157114800.
6 Wu, G., Qu, P., Sun, E., Chang, Z., Xu, Y., & Huang, H. (2015). Physical, chemical, and rheological properties of rice husks treated by composting process. BioResources, 10(1), 227-239. Retrieved in 2019, June 22, from https://bioresources.cnr.ncsu.edu/resources/physical-chemical-and-rheological-properties-of-rice-husks-treated-by-composting-process/
7 Campos, A., Teodoro, K. B. R., Marconcini, J. M., Mattoso, L. H. C., & Martins-Franchetti, S. M. (2011). Efeito do tratamento das fibras nas propriedades do biocompósito de amido termoplástico/policaprolactona/sisal. Polímeros, Ciência e Tecnologia, 21(3), 217-222. http://dx.doi.org/10.1590/s0104-14282011005000039.
8 Johar, N., Ahmad, I., & Dufresne, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37(1), 93-99. http://dx.doi.org/10.1016/j.indcrop.2011.12.016.
9 El Halal, S. L. M., Colussi, R., Deon, V. G., Pinto, V. Z., Villanova, F. A., Carreño, N. L. V., Dias, A. R. G., & Zavareze, E. R. (2015). Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, 133, 644-653. http://dx.doi.org/10.1016/j.carbpol.2015.07.024. PMid:26344323.
10 Prado, K. S., & Spinacé, M. A. S. (2015). Characterization of Fibers from Pineapple’s Crown, Rice Husks and Cotton Textile Residues. Materials Research, 18(3), 530-537. http://dx.doi.org/10.1590/1516-1439.311514.
11 Jonoobi, M., Harun, J., Shakeri, A., Misra, M., & Oksmand, K. (2009). Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources, 4(2), 626-639. Retrieved in 2019, June 22, from https://bioresources.cnr.ncsu.edu/resources/chemical-composition-crystallinity-and-thermal-degradation-of-bleached-and-unbleached-kenaf-bast-hibiscus-cannabinus-pulp-and-nanofibers/
12 Hospodarova, V., Singovszka, E., & Stevulova, N. (2018). Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. American Journal of Analytical Chemistry, 09(06), 303-310. http://dx.doi.org/10.4236/ajac.2018.96023.
13 Rong, M. Z., Zhang, M. Q., Liu, Y., Yang, G. C., & Zeng, H. M. (2001). The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology, 61(10), 1437-1447. http://dx.doi.org/10.1016/S0266-3538(01)00046-X.
14 Adel, A. M., Abd El-Wahab, Z. H., Ibrahim, A. A., & Al-Shemy, M. T. (2010). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresource Technology, 101(12), 4446-4455. http://dx.doi.org/10.1016/j.biortech.2010.01.047. PMid:20185300.
15 Pelissari, F. M., Sobral, P. J. A., & Menegalli, F. C. (2014). Isolation and characterization of cellulose nanofibers from banana peels. Cellulose (London, England), 21(1), 417-432. http://dx.doi.org/10.1007/s10570-013-0138-6.
16 Rosa, M. F., Medeiros, E. S., Malmonge, J. A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., Glenn, G., Orts, W. J., & Imam, S. H. (2010). Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81(1), 83-92. http://dx.doi.org/10.1016/j.carbpol.2010.01.059.
17 Silvério, H. A., Flauzino Neto, W. P., Dantas, N. O., & Pasquini, D. (2013). Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Industrial Crops and Products, 44, 427-436. http://dx.doi.org/10.1016/j.indcrop.2012.10.014.
18 Oliveira, J. P., Bruni, G. P., Lima, K. O., Halal, S. L. M. E., Rosa, G. S. D., Dias, A. R. G., & Zavareze, E. D. R. (2017). Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chemistry, 221, 153-160. http://dx.doi.org/10.1016/j.foodchem.2016.10.048. PMid:27979125.
19 Boran, S. (2016). Mechanical, morphological, and thermal properties of nutshell and microcrystalline cellulose filled high-density polyethylene composites. BioResources, 11(1), 1741-1752. http://dx.doi.org/10.15376/biores.11.1.1741-1752.
20 Spadetti, C., Silva, E. A., Fo., Sena, G. L., & Melo, C. V. P. (2017). Propriedades térmicas e mecânicas dos compósitos de polipropileno pós-consumo reforçados com fibras de celulose. Polímeros, Ciência e Tecnologia, 27(spe), 84-90. http://dx.doi.org/10.1590/0104-1428.2320.
21 Morais, J. A., Gadioli, R., & De Paoli, M.-A. (2016). Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading. Polímeros, Ciência e Tecnologia, 26(2), 115-122. http://dx.doi.org/10.1590/0104-1428.2124.
22 Poletto, M., & Zattera, A. J. (2017). Mechanical and dynamic mechanical properties of polystyrene composites reinforced with cellulose fibers : coupling agent effect. Journal of Thermoplastic Composite Materials, 30(9), 1242-1254. http://dx.doi.org/10.1177/0892705715619967.
23 Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. http://dx.doi.org/10.1002/app.21779.