Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.04620
Polímeros: Ciência e Tecnologia
Original Article

Cationic polymerization of styrene using iron-containing ionic liquid catalysts in an aqueous dispersed medium

Gabriel Victor Simões Dutra; Weslany Silvério Neto; Pedro Henrique Hermes de Araújo; Claudia Sayer; Brenno Amaro da Silveira Neto; Fabricio Machado

Downloads: 3
Views: 646

Abstract

This work aims to study the cationic miniemulsion polymerization of styrene catalyzed by iron-containing imidazolium-based ionic liquids. The polystyrenes had very high number-average molar mass around 1300 kg mol-1 at 85 °C, molar-mass dispersity close to 2.0 and glass transition temperature higher than 102 °C with average particle diameter that remained practically unchanged during the reaction, indicating that the monomer droplets correspond to the polymerization locus. First-order kinetics up to a limit conversion, along with the increase in molar mass as the temperature decreases, styrene polymerization at low temperatures and catalyst inability to polymerize monomers that react exclusively via free radical and/or anionic polymerization, indicate the cationic nature of polymerization. 1H-NMR and 13C-NMR spectra suggested the formation of polystyrene, allowing for tacticity distribution quantification: 10% isotactic, 20% atactic and 70% syndiotactic configurations. TEM micrographs confirmed the formation of spherical polymer nanoparticles and the presence of catalysts in the polymer matrix.

 

Keywords

high molar mass, ionic liquid catalysts, cationic polymerization, miniemulsion polymerization, styrene

References

1 Distler, D., Neto, W. S., & Machado, F. (2017). Emulsion polymerization. In S. Hashmi (Eds.), Reference module in materials science and materials engineering (pp. 1-14). New York: Elsevier. http://dx.doi.org/10.1016/B978-0-12-803581-8.03746-2.

2 Bompart, M., Vergnaud, J., Strub, H., & Carpentier, J. F. (2011). Indium(III) halides as exceptionally active, water-tolerant catalysts for cationic polymerization of styrenics. Polymer Chemistry, 2(8), 1638-1640. http://dx.doi.org/10.1039/c1py00145k.

3 Satoh, K., Kamigaito, M., & Sawamoto, M. (2000). Lanthanide triflates-mediated emulsion cationic polymerization of p-alkoxystyrenes in aqueous media. Macromolecules, 33(13), 4660-4666. http://dx.doi.org/10.1021/ma0000069.

4 Maitre, C., Ganachaud, F., Ferreira, O., Lutz, J. F., Paintoux, Y., & Hémery, P. (2000). Anionic polymerization of phenyl glycidyl ether in miniemulsion. Macromolecules, 33(21), 7730-7736. http://dx.doi.org/10.1021/ma0007132.

5 Kostjuk, S. V., & Ganachaud, F. (2010). Cationic polymerization of vinyl monomers in aqueous media: from monofunctional oligomers to long-lived polymer chains. Accounts of Chemical Research, 43(3), 357-367. http://dx.doi.org/10.1021/ar900198q. PMid:19957949.

6 Kostjuk, S. V., & Ganachaud, F. (2006). Cationic polymerization of styrene in solution and aqueous suspension using B(C6F5)3 as a water-tolerant Lewis acid. Macromolecules, 39(9), 3110-3113. http://dx.doi.org/10.1021/ma052650z.

7 Vasilenko, I. V., Ganachaud, F., & Kostjuk, S. V. (2016). New insights into the cationic polymerization in emulsion catalyzed by water-dispersible Lewis acid surfactant complexes: a case study with p-methoxystyrene. Macromolecules, 49(9), 3264-3273. http://dx.doi.org/10.1021/acs.macromol.6b00379.

8 Cauvin, S., Sadoun, A., Dos Santos, R., Belleney, J., Ganachaud, F., & Hemery, P. (2002). Cationic polymerization of p-methoxystyrene in miniemulsion. Macromolecules, 35(21), 7919-7927. http://dx.doi.org/10.1021/ma0202890.

9 Touchard, V., Graillat, C., Boisson, C., D’Agosto, F., & Spitz, R. (2004). Use of a Lewis acid surfactant combined catalyst in cationic polymerization in miniemulsion: Apparent and hidden initiators. Macromolecules, 37(9), 3136-3142. http://dx.doi.org/10.1021/ma0355352.

10 Zhang, J., Wu, Y., Li, X., Yang, D., Zhang, M., Wang, H., Shang, Y., Ren, P., Mu, X., Li, S., & Guo, W. (2019). Characteristics and mechanism of styrene cationic polymerization in aqueous media initiated by cumyl alcohol/B(C6F5)3. Macromolecular Chemistry and Physics, 220(4), 1800419-1800427. http://dx.doi.org/10.1002/macp.201800419.

11 Cauvin, S., Ganachaud, F., Moreau, M., & Hémery, P. (2005). High molar mass polymers by cationic polymerisation in emulsion and miniemulsion. Chemical Communications, (21), 2713-2715. http://dx.doi.org/10.1039/b501489a. PMid:15917929.

12 Vasilenko, I. V., Yeong, H. Y., Delgado, M., Ouardad, S., Peruch, F., Voit, B., Ganachaud, F., & Kostjuk, S. V. (2015). A catalyst platform for unique cationic (co)polymerization in aqueous emulsion. Angewandte Chemie International Edition, 54(43), 12728-12732. http://dx.doi.org/10.1002/anie.201501157. PMid:26013180.

13 Radchenko, A. V., Kostjuk, S. V., Vasilenko, I. V., Ganachaud, F., & Kaputsky, F. N. (2007). Controlled/living cationic polymerization of styrene with BF3OEt2 as a coinitiator in the presence of water: improvements and limitations. European Polymer Journal, 43(6), 2576-2583. http://dx.doi.org/10.1016/j.eurpolymj.2007.03.026.

14 Zhang, X., Guo, W., Wu, Y., Gong, L., Li, W., Li, X., Li, S., Shang, Y., Yang, D., & Wang, H. (2016). Cationic polymerization of p-methylstyrene in selected ionic liquids and polymerization mechanism. Polymer Chemistry, 7(32), 5099-5112. http://dx.doi.org/10.1039/C6PY00796A.

15 Yoshimitsu, H., Kanazawa, A., Kanaoka, S., & Aoshima, S. (2016). Cationic polymerization of vinyl ethers with alkyl or ionic side groups in ionic liquids. Journal of Polymer Science. Part A, Polymer Chemistry, 54(12), 1774-1784. http://dx.doi.org/10.1002/pola.28039.

16 Wu, Y., Han, L., Zhang, X., Mao, J., Gong, L., Guo, W., Gu, K., & Li, S. (2015). Cationic polymerization of isobutyl vinyl ether in an imidazole-based ionic liquid: characteristics and mechanism. Polymer Chemistry, 6(13), 2560-2568. http://dx.doi.org/10.1039/C4PY01784F.

17 Li, X., Wu, Y., Zhang, J., Li, S., Zhang, M., Yang, D., Wang, H., Shang, Y., Guo, W., & Yan, P. (2019). Synthesis of highly reactive polyisobutylenes via cationic polymerization in ionic liquids: characteristics and mechanism. Polymer Chemistry, 10(2), 201-208. http://dx.doi.org/10.1039/C8PY01141A.

18 Berezianko, I. A., Vasilenko, I. V., & Kostjuk, S. V. (2018). Acidic imidazole-based ionic liquids in the presence of diisopropyl ether as catalysts for the synthesis of highly reactive polyisobutylene: effect of ionic liquid nature, catalyst aging, and sonication. Polymer, 145, 382-390. http://dx.doi.org/10.1016/j.polymer.2018.04.059.

19 Berezianko, I. A., Vasilenko, I. V., & Kostjuk, S. V. (2019). Cationic polymerization of isobutylene co-initiated by chloroferrate imidazole-based ionic liquid: the advantageous effect of initiator and aromatic compounds. European Polymer Journal, 121, 109307. http://dx.doi.org/10.1016/j.eurpolymj.2019.109307.

20 Agner, T., Zimermann, A., Machado, F., Silveira Neto, B. A., Araújo, P. H. H., & Sayer, C. (2020). Thermal performance of nanoencapsulated phase change material in high molecular weight polystyrene. Polímeros: Ciência e Tecnologia, 30(2), e2020013. http://dx.doi.org/10.1590/0104-1428.01320.

21 Dutra, G. V. S., Teixeira, T. S., Medeiros, G. A., Abdelnur, P. V., Hermes de Araújo, P. H., Sayer, C., Neto, B. A. D., & Machado, F. (2020). On the role of metal-containing imidazolium-based ionic liquid catalysts in the formation of tailored polystyrene. Industrial & Engineering Chemistry Research, 59(50), 21685-21699. http://dx.doi.org/10.1021/acs.iecr.0c04327.

22 Alves, R. C., Agner, T., Rodrigues, T. S., Machado, F., Neto, B. A. D., Costa, C., Araújo, P. H. H., & Sayer, C. (2018). Cationic miniemulsion polymerization of styrene mediated by imidazolium based ionic liquid. European Polymer Journal, 104, 51-56. http://dx.doi.org/10.1016/j.eurpolymj.2018.04.035.

23 Ayat, M., Belbachir, M., & Rahmouni, A. (2017). Synthesis of block copolymers consists on vinylidene chloride and α- methylstyrene by cationic polymerization using an acid exchanged motmorillonite clay as heterogeneous catalyst (Algerian MMT). Journal of Molecular Structure, 1139, 381-389. http://dx.doi.org/10.1016/j.molstruc.2017.03.056.

24 Sang, W., & Yan, Q. (2018). Electro-controlled living cationic polymerization. Angewandte Chemie International Edition, 57(18), 4907-4911. http://dx.doi.org/10.1002/anie.201712270. PMid:29508512.

25 Rodrigues, T. S., Medeiros, G. A., Silva, F. M., & Neto, B. A. D. (2011). Polimerização do estireno com líquidos iônicos que possuem ácidos de Lewis incorporados na estrutura. In 34° Reunião Anual da Sociedade Brasileira de Química (p. 1). Florianópolis: Sociedade Brasileira de Química.

26 Bolner, F. M., Jensen, A. T., Sayer, C., Araújo, P. H. H., Machado, F., & Neto, B. A. D. (2017). Polimerização de estireno com catalisador a base de líquido iônico modificado. In 14° Congresso Brasileiro de Polímeros (pp. 1-5). Águas de Lindóia: Associação Brasileira de Polímeros.

27 Ramos, J., & Forcada, J. (2010). The role of cationic monomers in emulsion polymerization. European Polymer Journal, 46(5), 1106-1110. http://dx.doi.org/10.1016/j.eurpolymj.2010.01.012.

28 Dupont, J., Consorti, C. S., Suarez, P. A. Z., Souza, R. F., Fulmer, S. L., Richardson, D. P., Smith, T. E., & Wolff, S. (2002). Preparation of 1-butyl-3-methyl imidazolium-based room temperature ionic liquids. Organic Syntheses, 79, 236-243. http://dx.doi.org/10.15227/orgsyn.079.0236.

29 Ramos, L. M., Guido, B. C., Nobrega, C. C., Corrêa, J. R., Silva, R. G., Oliveira, H. C. B., Gomes, A. F., Gozzo, F. C., & Neto, B. A. D. (2013). The Biginelli reaction with an imidazolium–tagged recyclable iron catalyst: kinetics, mechanism, and antitumoral activity. Chemistry (Weinheim an der Bergstrasse, Germany), 19(13), 4156-4168. http://dx.doi.org/10.1002/chem.201204314. PMid:23460474.

30 Ahrens, S., Zeller, A., Taige, M., & Strassner, T. (2006). Extension of the alkane bridge in bisNHC−palladium−chloride complexes. Synthesis, structure, and catalytic activity. Organometallics, 25(22), 5409-5415. http://dx.doi.org/10.1021/om060577a.

31 Rodrigues, T. S., Machado, F., Lalli, P. M., Eberlin, M. N., & Neto, B. A. D. (2015). Styrene polymerization efficiently catalyzed by iron-containing imidazolium-based ionic liquids: reaction mechanism and enhanced ionic liquid effect. Catalysis Communications, 63, 66-73. http://dx.doi.org/10.1016/j.catcom.2014.11.002.

32 Machado, F., Lima, E. L., & Pinto, J. C. (2007). Uma revisão sobre os processos de polimerização em suspensão. Polímeros: Ciência e Tecnologia, 17(2), 166-179. http://dx.doi.org/10.1590/S0104-14282007000200016.

33 Aoshima, S., & Kanaoka, S. (2009). A renaissance in living cationic polymerization. Chemical Reviews, 109(11), 5245-5287. http://dx.doi.org/10.1021/cr900225g. PMid:19803510.

34 Islam, M. N., Haldorai, Y., Nguyen, V. H., & Shim, J.-J. (2014). Synthesis of poly(vinyl pivalate) by atom transfer radical polymerization in supercritical carbon dioxide. European Polymer Journal, 61, 93-104. http://dx.doi.org/10.1016/j.eurpolymj.2014.09.003.

35 Kostjuk, S. V., Dubovik, A. Y., Vasilenkol, I. V., Mardykin, V. P., Gaponik, L. V., Kaputsky, F. N., & Antipin, L. M. (2004). Novel initiating system based on AlCl3 etherate for quasiliving cationic polymerization of styrene. Polymer Bulletin, 52(3), 227-234. http://dx.doi.org/10.1007/s00289-004-0280-2.

36 Banerjee, S., Paira, T. K., & Mandal, T. K. (2013). Control of molecular weight and tacticity in stereospecific living cationic polymerization of α-methylstyrene at 0 °C using FeCl3-based initiators: effect of tacticity on thermal properties. Macromolecular Chemistry and Physics, 214(12), 1332-1344. http://dx.doi.org/10.1002/macp.201300092.

37 Paira, T. K., Banerjee, S., Raula, M., Kotal, A., Si, S., & Mandal, T. K. (2010). Peptide−polymer bioconjugates via atom transfer radical polymerization and their solution aggregation into hybrid micro/nanospheres for dye uptake. Macromolecules, 43(9), 4050-4061. http://dx.doi.org/10.1021/ma1001904.

38 Yamada, K., Minoda, M., & Miyamoto, T. (1999). Controlled synthesis of amphiphilic block copolymers with pendant N-acetyl-D-glucosamine residues by living cationic polymerization and their interaction with WGA lectin. Macromolecules, 32(11), 3553-3558. http://dx.doi.org/10.1021/ma9816315.

39 Biedroń, T., & Kubisa, P. (2004). Cationic polymerization of styrene in a neutral ionic liquid. Journal of Polymer Science. Part A, Polymer Chemistry, 42(13), 3230-3235. http://dx.doi.org/10.1002/pola.20158.

40 Patrocinio, V. M. B., Agner, T., Dutra, G. V. S., Machado, F., Neto, B. A. D., Araújo, P. H. H., & Sayer, C. (2019). High molecular weight polystyrene obtained by cationic emulsion polymerization catalyzed by imidazolium-based ionic liquid. Macromolecular Reaction Engineering, 13(2), 1800061-1800067. http://dx.doi.org/10.1002/mren.201800061.

41 Banerjee, S., Paira, T. K., Kotal, A., & Mandal, T. K. (2010). Room temperature living cationic polymerization of styrene with HX-styrenic monomer adduct/FeCl3 systems in the presence of tetrabutylammonium halide and tetraalkylphosphonium bromide salts. Polymer, 51(6), 1258-1269. http://dx.doi.org/10.1016/j.polymer.2010.01.051.

42 Medeiros, A. M. M. S., Machado, F., Rubim, J. C., & McKenna, T. F. L. (2017). Bio-based copolymers obtained through miniemulsion copolymerization of methyl esters of acrylated fatty acids and styrene. Journal of Polymer Science. Part A, Polymer Chemistry, 55(8), 1422-1432. http://dx.doi.org/10.1002/pola.28511.

43 Rieger, J. (1996). The glass transition temperature of polystyrene. Journal of Thermal Analysis, 46(3), 965-972. http://dx.doi.org/10.1007/BF01983614.

44 Szkudlarek, M., Beginn, U., Keul, H., & Möller, M. (2017). Synthesis of terpolymers with homogeneous composition by free radical copolymerization of maleic anhydride, perfluorooctyl and butyl or dodecyl methacrylates: application of the continuous flow monomer addition technique. Polymers, 9(11), 610. http://dx.doi.org/10.3390/polym9110610. PMid:30965911.

45 Metanawin, S., Panutumron, P., Thongsale, A., & Metanawin, T. (2018). The functionalization of hybrid titanium dioxide by miniemulsion polymerization technique. Materials Today: Proceedings, 5(3, Part 2), 9651-9657. http://dx.doi.org/10.1016/j.matpr.2018.01.133.

46 Christie, D., Zhang, C., Fu, J., Koel, B., & Priestley, R. D. (2016). Glass transition temperature of colloidal polystyrene dispersed in various liquids. Journal of Polymer Science. Part B, Polymer Physics, 54(17), 1776-1783. http://dx.doi.org/10.1002/polb.24082.

47 Shen, Y., Du, C., Zhou, J., & Ma, F. (2018). The facile modification of polyacrylate emulsion via hexadecane to enhance controlled-release profiles of coated urea. Scientific Reports, 8(1), 12279. http://dx.doi.org/10.1038/s41598-018-30585-5. PMid:30116004.

48 Gaynor, S. G., Edelman, S., & Matyjaszewski, K. (1996). Synthesis of branched and hyperbranched polystyrenes. Macromolecules, 29(3), 1079-1081. http://dx.doi.org/10.1021/ma9513877.

49 Huang, W., Gu, W., Yang, H., Xue, X., Jiang, B., Zhang, D., Fang, J., Chen, J., Yang, Y., & Guo, J. (2017). Preparation and properties of branched polystyrene through radical suspension polymerization. Polymers, 9(1), 14. http://dx.doi.org/10.3390/polym9010014. PMid:30970692.

50 Li, B., Liu, W., & Wu, Y. (2012). Synthesis of long-chain branched isotactic-rich polystyrene via cationic polymerization. Polymer, 53(15), 3194-3202. http://dx.doi.org/10.1016/j.polymer.2012.04.030.

51 Rozentsvet, V. A., Kozlov, V. G., Sablina, N. A., Stotskaya, O. A., Peruch, F., & Kostjuk, S. V. (2017). New insight into the polymerization mechanism of 1,3-dienes cationic polymerization. IV. Mechanism of unsaturation loss in the polymerization of isoprene. Polymer Chemistry, 8(5), 926-935. http://dx.doi.org/10.1039/C6PY01736C.

52 Artusio, F., Bazzano, M., Pisano, R., Coulon, P. E., Rizza, G., Schiller, T., & Sangermano, M. (2018). Polymeric nanocapsules via interfacial cationic photopolymerization in miniemulsion. Polymer, 139, 155-162. http://dx.doi.org/10.1016/j.polymer.2018.02.019.
 

609d19a1a9539510573c1192 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections